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Integrating wireless sensor networks in an undergraduate embedded
systems course exposes students to an important emerging technology
in the core of the computer engineering curriculum.

omputer engineering curricula have evolved

dramatically over the past 20 years. The

early focus was on computer architecture

and CPU design. In the 1990s, attention

shifted to systems built around highly inte-
grated microcontrollers. By 2000, the software for
these embedded systems assumed a more important
role, and embedded operating systems provided high-
level design abstractions. More recently, wireless
communication capabilities have greatly expanded
the embedded applications space, leading to new sys-
tem paradigms such as sensor networks.

Educational excellence requires exposing students
to the current edge of research. To ensure that stu-
dent projects are along the same trajectory that the
industry is traveling, educators must continually
introduce emerging techniques, practices, and appli-
cations into the curriculum.

At the University of Washington’s Department of
Computer Science & Engineering (UW CSE), we
have integrated the emerging field of wireless sen-
sor networks into our undergraduate computer
engineering curriculum. While many graduate-level
classes focus on sensor networks,'* they do not
provide a good template for the undergraduate
curriculum because they assume a much greater
breadth of knowledge than undergraduate students
usually have as well as greater maturity to absorb
new topics on their own.
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Other efforts to introduce undergraduates to this
important application area have focused on using
sensor networks in capstone project courses that
challenge senior students to apply their acquired
knowledge and skills to a final project. The UW
CSE “Flock of Birds” project integrates the theory
and practice of wireless sensor networks into the
mainstream curriculum early enough to form a
basis for all students’ understanding of embedded
computing—not just a short-lived application exer-
cise for some capstone design projects. Figure 1
shows one sensor node—the bird is optional—from
the project.

COMPUTER ENGINEERING CURRICULUM

The UW CSE computer engineering program
relies on a core curriculum shared with the com-
puter science program. It consists of introductory
courses in programming, discrete mathematics, data
structures, formal methods, comparative program-
ming languages, logic design, and computer archi-
tecture. Computer engineering students specialize
with additional second-tier courses in electrical
engineering, operating systems, networks, embed-
ded software, and digital system design, as well as
a capstone design course that takes a product idea
from concept to prototype.

The embedded software, digital design, and cap-
stone design courses give the computer engineering
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program its character. They integrate software and
hardware design skills and prepare students to
build modern digital systems from start to finish.

In the embedded software course, students learn
to use microcontrollers and their interfaces effec-
tively to build systems that control physical devices.
The digital design course teaches them to program
algorithms into hardware. In the capstone design
course, the students apply all their skills to a prod-
uct that we try to make similar to those on which
industry engineers are currently working—in other
words, products that will appear on the market one
or two years after the students graduate.

CSE 466: Software for Embedded Systems

The students in our embedded software course
(CSE 466) have completed computer architecture
and digital design courses, and most have studied
operating systems as well.

This course exposes the students to the design
issues that characterize embedded systems. These
include constrained resources, such as limited mem-
ory space, I/O, and CPU frequency; the absence of
an operating system to handle low-level tasks such
as interrupts and peripheral device interfaces; and
a variety of protocols for communication between
components.

Further, embedded systems often require a
debugging tool set different from that of the full-
scale systems familiar to our students. Print state-
ments are seldom available, nor are breakpoints
always an option. Programmers and, in this case,
students must find other methods to signal code
milestones.

Through prerequisite courses on data structures,
digital design, and machine architecture, CSE 466
students have a solid understanding of how the
hardware works and how to build efficient data
structures for their algorithms. This gives them the
foundation they need to write software at the low
level required by embedded systems. The students
build on these prerequisites with a hands-on project
that is designed to lead them through the process of
applying what they already know while exposing
them to the new issues that arise with embedded
systems.

When students finish the 10-week class, they
should be comfortable writing code that directly
manipulates I/O registers and establishes commu-
nications between multiple devices. They should
also understand how interrupts work and how to
handle them as well as how to interpret the
datasheet of whatever chip they decide to work
with in the future.

Project design for wireless sensor networks

Each edition of CSE 466 must define a project
that addresses the complexities of embedded sys-
tems within the constraints of a 10-week course.
For pedagogical reasons, we want a project that
students can complete individually. At the same
time, students are generally more engaged by class-
wide projects, so we like the individual work to
contribute to an overall class effort.

Students are also more interested in projects that
use current technology as opposed to obsolete com-
ponents that they will never see again after they
graduate. As both memory and CPU cycles become
more plentiful in most of today’s microprocessors,
designing a project that is resource constrained
poses another challenge.

The computer engineering curriculum already
used Atmel ATmega AVR-series microprocessors
(www.atmel.com) and the AVR-GCC (www.
openavr.org) C compiler, so students were familiar
with these core materials. To incorporate wireless
sensor networks into the curriculum, we selected the
Crossbow (www.xbow.com) Mica2dot platform.
The product is an implementation of TinyOS sen-
sor motes (www.tinyos.net), originally created at the
University of California at Berkeley.* Mica2dot fea-
tures a standard platform with built-in hardware,
the existing TinyOS code base, and a convenient
form factor for adding predefined sensors.

The event-based style of TinyOS helped students
understand time constraints and code structure by
forcing them to write short, nonblocking routines.
Its modular design simplified the integration of com-
ponents like the radio stack, saving countless hours
of coding. TinyOS also provided a degree of abstrac-
tion within the embedded system context and intro-
duced students to a style of event-based coding that
stresses real-time as well as functional issues.

We made sound generation a major focus of the
project and the overall class. Students can under-
stand and implement sound generation in a month,
yet it taxes a system’s cycle and memory capacity
enough to make efficiency an important design con-

Figure 1. A mote-
sensor bird. The
“Flock of Birds”
embedded systems
project integrates
the theory and
practice of wireless
sensor networks
into the mainstream
classroom
curriculum.
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Figure 2. The
Microsoft Atrium

in the Paul G. Allen
Center for Computer
Science &
Engineering,
University of
Washington. The
“Flock of Birds”
project concluded
with a concert

in the atrium
consisting of 50
“hird” motes that
sang songs based
on what other birds
within radio range
were singing.

straint. A sample rate in the tens of kilohertz range
can generate usable sound. Visual displays such as
video on LCDs demand many more computation
cycles, but human observers seldom notice visual
timing errors on the order of tens of milliseconds.
On the other hand, errors of even a few microsec-
onds are discernible in sound generation, giving
students quick feedback on program accuracy.

A FLOCK OF BIRDS

The “Flock of Birds” project is a simple distrib-
uted system that meets our course objectives by com-
bining sound generation with emergent behavior in
an ad hoc network. Each student programs a mote
to act as a bird that has several songs stored in its
local memory. The programs execute a common rule
base, but each bird acts independently—deciding
which song to sing based on what the other birds
within radio range are singing. In combination, the
songs create the sound a flock of birds makes.

The flock is designed to work in any random
configuration with any number of nodes. We
implemented the project in the Microsoft Atrium
of the University of Washington Paul G. Allen
Center for Computer Science & Engineering,
shown in Figure 2.

The primary goal was subjective: to generate
behavior that mimics the effect of birds cooperat-
ing to sing the same song but vary the particular
song over time. We implemented monitoring soft-
ware to measure the effect, but the final judgment
of success was aesthetic: Does it sound right? The
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subjective measure contrasts with the usual quan-
titative measures we used in most of our past pro-
jects. A visual display of the data associated with
the sound reinforced the aural perception.

The algorithm for generating behavior uses radio
packets collected for random amounts of time from
other motes. After the time lapses, the mote decides
which song to sing based on the data about what
songs the neighboring motes are singing. The mote
then shuts its radio off, sings its song, turns the
radio back on, and transmits a packet announcing
which song it just sang.

This algorithm requires using timers, radio com-
munication, and direct manipulation of hardware
registers for sound production. Students had to first
develop a complex software module on a bread-
board and then explore the challenges of porting
it to the mote within the TinyOS constraints.

A monitoring node served as the gateway to a
control laptop that used special radio packets to
start and stop the algorithm and to modify global
parameters, such as the min/max limits for the ran-
dom number generation that determined an indi-
vidual node’s behavior. This added a dynamic aspect
to the flock process. For example, we could control
the temporal density of bird songs by changing the
maximum value for the listen time between song
events. Lowering the radio transmit level in the large
space of the atrium prevented distant motes from
hearing each other and made the flocking effect
operate in multiple local areas.

We presented the flock concept to the students
in the context of emergent behavior and the basics
of cellular automata and gave them the simplified
template algorithm shown in Figure 3.

The initial flock specification was purposely
incomplete, as we wanted student feedback and
participation in completing its definition. This is
analogous to what students might experience in the
real world, where others have decided on a proto-
col and high-level algorithm, and the developer’s
job is to implement a system that realizes the func-
tionality.

The incomplete specification also exposed stu-
dents to different interpretations of the design doc-
umentation. They had to identify the ambiguities
and then clarify them either with other developers
or with us, “the customer.”

We asked students to invent a methodology for
predicting the success of this algorithm and to sug-
gest three improvements to it. We incorporated
many of these suggestions into the final algorithm
to enhance students’ experience of participating in
the project design. A complete procedural docu-



ment is available on the class Web site (www.cs.
washington.edu/education/courses/cse466/03au/).

COURSE WORK

Most students in the course had no prior embed-
ded programming experience. To keep the first few
assignments simple, easy to debug, and somewhat
familiar, we had the students begin programming
with embedded C rather than TinyOS. The assign-
ments introduced some basic embedded systems
programming concepts such as decoding binary
numbers to pins for a pair of seven-segment dis-
plays, using an analog-digital converter to measure
sensor voltage and current levels, and writing inter-
rupt handlers for timers.

Breadhoard basics

The students compiled their programs with AVR-
GCC and uploaded them to an ATmegal6 proces-
sor on a solderless breadboard. These chips come
in a standard dual-inline package that is easy to
place on a standard breadboard. The breadboard
allowed space for students to add peripheral devices
and debug their circuits by connecting probes for
oscilloscopes and logic analyzers.

After introducing the basics, the course moved
quickly to more specific applications—most
notably, sound generation with a piezoelectric
transducer. The first sound assignment involved
using a wave table to generate sine waves at vari-
ous frequencies. This introduced the students to the
notion of using a fixed sampling rate with a phase
increment to control frequency.

Also, because the ATmega microprocessor series
has no digital-analog converter, the students had to
use pulse-width modulation instead to produce
analog outputs to drive the piezoelectric transducer.
Using PWM for this purpose was new to many stu-
dents, and few of them saw immediately that they
could use a low-pass filter in conjunction with
PWM to produce a reasonably accurate DAC. By
the assignment’s end, however, all the students had
at least a basic grasp of both PWM and simple
hardware-based low-pass frequency filtering.

For the next assignment, students had to build a
system that could play several different songs. The
system implemented familiar songs based on cell
phone ring tones, ranging from Fiir Elise to Theme
from “The A Team.” Using familiar songs helped
the students quickly determine whether their imple-
mentation worked. If they recognized the song, they
were on the right track; if not, they likely had a
problem. Using familiar songs also raised the inter-
est level in the class. This was one of the rare times

Goals for the flock:
Birds sing the same song for a little while.
Songs start, spread, then die out.

Over time, different songs emerge as dominant for some period of time.

Flock process flow:

1. Initialization tasks; select x = random(0-15).
Radio off; sing birdsong[x]; radio on.

Listen for Random(min1, max1) sec.
SendMessage “I sang song x”.

Listen for Random(min2, max2) sec.
Decide which song to sing next:

a. Determine nearest songs.

R

b. If my song is the same as any of the nearest songs, then I'll repeat the same

song.

c. Ifall nearby motes are singing the same song, then I'll switch to a different

song.

d. Ifall nearby songs are distinct, then I'll switch to a different song.

7. Goto step 2 and repeat.

that computer engineering students could show off
their projects to nontechnical friends.

Sound generation uses both wave and sequenc-
ing tables, which require large amounts of mem-
ory—more than main memory could accommo-
date. Because the standard method of simply
putting these tables in RAM as static arrays was
not possible, students had to put the data in pro-
gram space. This was slightly less convenient
because the lookup required special calls. However,
it introduced students to standard practice for han-
dling static data in an embedded environment. This
reinforced the concept of memory mapping and
resource allocation.

The final assignment on the ATmegal6 was to
play 16 different bird songs. The songs were in
MIDI format, which is slightly different from the
previous format and required the students to con-
vert to a storage format of their own devising.
However, the sound-generation portion of the
assignment was very similar to the earlier assign-
ment, so students were able to reuse much of the
code they had already written.

Students were not as familiar with the birdsongs
as they were with the tunes from the previous
assignment. By playing the MIDI files on their PC
and comparing the sound with their implementa-
tion’s, they were able to get their code up and run-
ning quickly.

The ATmega128 processor that the Mica2dot
motes use is very similar to the ATmega16, so much
of the code from this assignment was reused as a
component in the final project.

Motes and Tiny0S

Once the students were comfortable with basic
embedded-systems programming issues, we intro-
duced motes and TinyOS. TinyOS is based on an
event-driven paradigm instead of the polling para-
digm that was standard for previous student assign-
ments. Some students had been exposed to the

Figure 3. Goals and
simplified algorithm
for each bird in the
flock.
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Figure 4. “Flock of
Birds” monitoring
laptop and wall
display. The
frequency of
different bird songs
was projected in
real time during
the concert.

event-based paradigm through operating system or
user-interface programming classes, but many of
them had not.

Students spent the first few weeks learning what
a component, module, and interface were and how
to wire modules together. To add to the confusion
about event-driven programming, the students
struggled to learn NesC (http://nescc.source
forge.net/), an extension to the C programming lan-
guage designed at UC Berkeley for TinyOS.’

We used tutorials from the TinyOS Web site and
simple assignments to introduce this subject to stu-
dents. After a rough start, students began to see
how quickly they could build programs with con-
siderable functionality and only a little custom code
connected to existing software components.

Many students used a 15.625-kHz sampling rate
on the Crossbow Mica2dot motes. Running at the
standard 4 MHz, the system outputs samples every
256 cycles. This forced students to code their sam-
pling algorithms carefully so that the processing
could finish within the 256 cycles.

Debugging the Mica2dot motes presents inter-
esting challenges. Traditionally, students debug their
programs by embedding print statements in their
code or using interactive debuggers with breakpoint
and inspection capabilities. The Mica2dot has one
light-emitting diode for use in feedback. While
TinyOS includes a simulator, many of the mote
components that control hardware, such as the
radio and sound-generation components, cannot be
effectively debugged with the simulator. Students
could use some print statements with the serial port
while the mote is on the programmer, but they had
to be more inventive when debugging in the wireless

Computer

communication environment.

Given that the flock algorithm runs on a mote
among many other motes running the same algo-
rithm, each node receives large amounts of input
that the test cycle must simulate to emulate all the
other nearby nodes. This required a substantial
test fixture that could produce large numbers of
packets at predetermined times and then report on
the packets sent by the mote under test.

Instead of having the students implement the
entire test fixture, we provided a fixture that took
as input a simple description of packets to send and
the time delay between them and sent these to the
mote under test. This test fixture handled all of the
necessary low-level interactions and allowed the
students to write arbitrary and repeatable tests.
This freed them from having to worry about the
details of sending packets from a computer to the
mote under test.

Writing these tests also helped the students to
better understand the timing details of the com-
munication protocol. The students not only had to
figure out how to generate a comprehensive test for
the protocol but also how to create situations that
would produce specific desired responses. Where
they lacked understanding or the documentation
lacked detail, they had to chase down their bugs
systematically.

Concert exam

The conclusion of the project was a two-hour
“concert” of 50 motes in the Allen Center Atrium.
Students had to qualify their birds for admission
by passing a special test designed to exclude rogue
birds from the flock. Well-behaved birds graduated
to the Allen Center atrium for the performance.
Students reprogrammed failed motes with code
from motes that did pass, allowing everyone to par-
ticipate in the concert.

For the performance, we had to modify the test-
ing program to send specific packets that would
trigger the motes to begin their process. The under-
lying system was already implemented, so we sim-
ply built a GUI to it. The GUI also allowed us to
monitor the motes and project a real-time wall dis-
play of the frequency of different birdsongs the
motes were singing. Figure 4 shows a snapshot of
the central monitoring laptop and projected wall
display during the concert.

We used the existing TinyOS SerialForwarder
component to put control motes at various places
in the room and have them forward their received
packets to the monitoring laptop via 802.11 wire-
less Ethernet. In this way, we could turn the trans-



mit strength down very low on the bird motes while
still ensuring that the monitoring system recorded
every packet sent.

The overall sound effect was pleasing, and
even worked in three dimensions when some stu-
dents moved their birds to upper balconies. The
aural feedback contrasted with more conven-
tional projects that require extended data analy-
sis to understand the results. The results were
also easier to understand than many simulation
schemes.

The project succeeded from an instructional per-
spective—integrating communication protocols,
constrained resources, hardware control, and a
novel application that required student projects to
interact. The motes supported a project that would
otherwise have been too complex to implement
over a 10-week quarter.

PROJECT CHALLENGES

TinyOS is a work in progress. The large-scale
installation in our laboratories was daunting, par-
ticularly relative to conflicts with preinstalled tools
such as Cygwin and Java. These tools are used sys-
temwide by many more classes and students than
our immediate group, and we spent much staff time
solving configuration problems. These problems
will change with each new TinyOS version, so this
aspect of the course will remain time-consuming
until the tools and installation procedures mature.

The tutorials provided with TinyOS helped to
introduce the students to the basics. However, stu-
dents could implement the tutorial examples by
simply copying code or following instructions by
rote. To make sure students understood the under-
lying concepts, we gave an exam to test their
knowledge. This motivated the students to take the
time necessary to learn the concepts. After the
exam, many students claimed that TinyOS was sim-
ple once they understood it. Future versions of the
tutorials might benefit from scattering conceptual
questions along the way to help students focus on
the high-level structures of TinyOS in addition to its
mechanics.

Some nondeterminism in our specification often
made it difficult to accurately predict whether a
mote under test was going to be listening at any
given time. Because of this, our testing required us
to provide very clear cases in which several dropped
packets would not affect the outcome. We also had
to allow for some packets to be dropped when
transmitting them back from the node under test.

We determined that a fully automated testing sys-
tem for grading would not be feasible. Instead, we

scripted seven tests totaling roughly 10 minutes,
after which the staff ran through the data by hand.
This was not a problem, however, since each test
produced only 5 to 20 packets from the mote—a
small number that was easy to examine.

The test program represented a large undertak-
ing for the staff. It totaled more than 4,000 lines of
Java even though it used the SerialForwarder com-
ponent shipped with TinyOS. The program never-
theless proved quite useful to both staff and
students, enabling bombardment of a mote with
large numbers of random packets as well as just a
few carefully chosen packets.

e have considered making several changes

to this project if we use it again in the

future. First, the sound quality of the piezo-
electric transducers, while sufficient, was not
exactly high fidelity. The choice was based on its
extremely low power requirement, but in other
operating environments this might not be a con-
sideration. Research into other transducers or
speakers could enable a wider repertory of sounds.
For example, we have considered including insects,
rain, other animal sounds, and whispered voices,
along with contexts and rules sets for emergent
behavior to fit the sound types.

We might add input sensors. Light sensing could
allow the virtual entity to react to the diurnal cycle
of ambient light. Proximity sensors could support
behavior modifications according to the move-
ments of people near a mote.

Expanding the project to include rechargeable
batteries and power management could allow a life
cycle that would require activity only when power
was sufficient, in the style of BEAM robots (www.
nis.lanl.gov/projects/robot/).

Controlling light-source color and intensity
could add visual interest and another level of com-
plexity.

From the instructional viewpoint, a vital ingre-
dient of the course is having an experienced TinyOS
programmer on the staff. Until the accompanying
teaching materials for motes and TinyOS mature,
this expertise will be an important condition in
attempts to scale the project.
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