
Chapter 5 

Bounds on Performance 

5.1. Introduction 

We begin this part of the book with a chapter devoted to the simplest 
useful approach to computer system analysis using queueing network 
models: bounding analysis. With very little computation it is possible to 
determine upper and lower bounds on system throughput and response 
time as functions of the system workload intensity (number or arrival rate 
of customers>. We describe techniques to compute two classes of perfor- 
mance bounds: asymptotic bounds and balanced system bounds. Asymp- 
totic bounds hold for a wider class of systems than do balanced system 
bounds. They also are simpler to compute. The offsetting advantage of 
balanced system bounds is that they are tighter, and thus provide more 
precise information than asymptotic bounds. 

There are several characteristics of bounding techniques that make 
them interesting and useful: 
l The development of these techniques provides valuable insight into 

the primary factors affecting the performance of computer systems. In 
particular, the critical influence of the system bottleneck is highlighted 
and quantified. 

l The bounds can be computed quickly, even by hand. Bounding 
analysis therefore is suitable as a first cut modelling technique that can 
be used to eliminate inadequate alternatives at an early stage of a 
study. 

l In many cases, a number of alternatives can be treated together, with 
a single bounding analysis providing useful information about them 
all. 

In contrast to the bounding techniques discussed here, the more sophisti- 
cated analysis techniques presented in subsequent chapters require con- 
siderably more computation - to the point that it is infeasible to perform 
the analysis by hand. 

Bounding techniques are most useful in system sizing studies. Such 
studies involve rather long-range planning, and consequently often are 
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based on preliminary estimates of system characteristics. With such 
imprecision in knowledge of the system, quick bounding studies may be 
more appropriate than more detailed analyses leading to specific estimates 
of performance measures. System sizing studies typically involve con- 
sideration of a large number of candidate configurations. Often a single 
resource (such as the CPU> is the dominant concern, because the 
remainder of the system can be configured to match the power of this 
resource. Bounding analysis permits considering as one alternative a group 
of candidate configurations that have the same critical resource but differ 
with respect to the pattern of demands at the other service centers. 

Bounding techniques also can be used to estimate the potential perfor- 
mance gain of alternative upgrades to existing systems. In Section 5.3 we 
indicate how graphs of the bounds can provide insight about the extent of 
service demand reduction required at the bottleneck center if it is to be 
possible to meet stated performance goals. (Service demand at a center 
can be reduced either by shifting some work away from the center or by 
substituting a faster device at the center.) 

Our discussion of bounding analysis is restricted to the single class 
case. Multiple class generalizations exist, but they are not used widely. 
One reason for this is that bounding techniques are most useful for capa- 
city studies of the bottleneck center, for which single class models suffice. 
Additionally, a major attraction of bounding techniques in practice is their 
simplicity, which would be lost if multiple classes were included in the 
models. 

The models we consider in the remainder of this chapter can be 
described by the following parameters: 

- K, the number of service centers; 
- Dmx> the largest service demand at any single center; 
- D, the sum of the service demands at the centers; 
- the type of the customer class (batch, terminal, or transaction); 
- 2, the average think time (if the class is of terminal type). 

For models with transaction type workloads, the throughput bounds indi- 
cate the maximum customer arrival rate that can be processed by the sys- 
tem, while the response time bounds reflect the largest and smallest pos- 
sible response times that these customers could experience as a function 
of the system arrival rate. For models with batch or terminal type work- 
loads, the bounds indicate the maximum and minimum possible system 
throughputs and response times as functions of the number of customers 
in the system. We refer to throughput upper and response time lower 
bounds as optimistic bounds (since they indicate the best possible perfor- 
mance), and we refer to throughput lower and response time upper 
bounds as pessimistic bounds (since they indicate the worst possible per- 
formance). While we treat only bounds on system throughput and 
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response time in the following sections, the fundamental laws of Chapter 
3 can be used to transform these into bounds on other performance 
measures, such as service center throughputs and utilizations. 

5.2. Asymptotic Bounds 

Asymptotic bounding analysis provides optimistic and pessimistic 
bounds on system throughput and response time in single class queueing 
networks. As their name suggests, they are derived by considering the 
(asymptotically) extreme conditions of light and heavy loads. The vali- 
dity of the bounds depends on only a single assumption: that the service 
demand of a customer at a center does not depend on how many other 
customers currently are in the system, or at which service centers they 
are located. 

The type of information provided by asymptotic bounds depends on 
whether the system workload is open (transaction type) or closed (batch 
or terminal type). We begin with the simpler case, that of transaction 
type workloads. 

5.2.1. Transaction Workloads 

For transaction workloads, the throughput bound indicates the max- 
imum possible arrival rate of customers that the system can process suc- 
cessfully. If the arrival rate exceeds this bound, a backlog of unprocessed 
customers grows continually as jobs arrive. Thus, in the long run, an 
arriving job has to wait an indefinitely long time (since there may be any 
number of jobs already in queue when it arrives). In this case we say that 
the system is saturated. The throughput bound thus is the arrival rate 
that separates feasible processing from saturation. 

The key to determining the throughput bound is the utilization law: 
U, = X,S, for each center k. If we denote the arrival rate to the system 
as X, then X, = XV,, and the utilization law can be rewritten as 
U, = hDk, where Dk is the service demand at center k. To derive the 
throughput bound, we simply note that as long as all centers have unused 
capacity (i.e., have utilizations less than one>, an increased arrival rate 
can be accommodated. However, when any of the centers becomes 
saturated (i.e., has utilization one>, the entire system becomes saturated, 
since no increase in the arrival rate of customers can be handled success- 
fully. Thus, the throughput bound is the smallest arrival rate h,,, at 
which any center saturates. Clearly, the center that saturates at the 
lowest arrival rate is the bottleneck center - the center with the largest 
service demand. Let max be the index of the bottleneck center. Then: 
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Thus, for arrival rates greater than or equal to l/D,, the system is 
saturated, while the system is capable of processing arrival rates less than 
WL.~. 

Asymptotic response time bounds indicate the largest and smallest 
possible response times experienced by customers when the system 
arrival rate is h. Because the system is unstable if h > h,,, we limit our 
investigation to the case where the arrival rate is less than the throughput 
bound. There are two extreme situations: 
l In the best possible case, no customer ever interferes with any other, 

so that no queueing delays are experienced. In that case the system 
response time of each customer is simply the sum of its service 
demands, which we denote by D. 

l In the worst possible case, n customers arrive together every n/x time 
n units (the system arrival rate is - = 

n/A 
X>. Customers at the end of 

the batch are forced to queue for customers at the front of the batch, 
and thus experience large response times. As the batch size n 
increases, more and more customers are waiting an increasingly long 
time. Thus, for any postulated pessimistic bound on response times 
for system arrival rate h, it is possible to pick a batch size n 
sufficiently large that the bound is exceeded. We conclude that there 
is no pessimistic bound on response times, regardless of how small the 
arrival rate X might be. 

These results are somewhat unsatisfying. Fortunately, the throughput 
and response time bounds provide more information in the case of closed 
(batch and terminal) workload types. 

5.2.2. Batch and Terminal Workloads 

Figures 5.la and 5.lb show the general form of the asymptotic bounds 
on throughput and response time for batch and terminal workloads, 
respectively. The bounds indicate that the precise values of the actual 
throughputs and response times must lie in the shaded portions of the 
figures. The general shapes and positions of these values are indicated by 
the curves in the figures. 
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Figure 5.la - Asymptotic Bounds on Performance 
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Figure 5.lb - Asymptotic Bounds on Performance 
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To derive the bounds shown in the figures, we first consider the 
bounds on throughput, and then use Little’s law to transform them into 
corresponding bounds on response time. Our analysis is stated in terms 
of terminal workloads. By taking the think time, Z, to be zero, we obtain 
results for batch workloads. 

We begin with the heavy load (many customer) situation. As the 
number of customers in the system (N) becomes large, the utilizations of 
all centers grow, but clearly no utilization can exceed one. From the utili- 
zation law we have for each center k that: 

U,(N) = X(N) Dk < 1 

Each center limits the maximum possible throughput that the system can 
achieve. Since the bottleneck center (max> is the first to saturate, it res- 
tricts system throughput most severely. We conclude that: 

Intuitively this is clear, because if each customer requires on average 
D ,tia.Y time units of service at the bottleneck center, then in the long run 
customers certainly cannot be completed any faster than one every D,,,,, 
time units. 

Next consider the light load (few customers) situation. At the 
extreme, a single customer alone in the system attains a throughput of 
1 / CD+ 21, since eachKinteraction consists of a period of service (of 

average length D = z Dk) and a think time (of average length Z>. 
k=l 

As more customers are added to the system there are two bounding situa- 
tions: 
l The smallest possible throughput occurs when each additional custo- 

mer is forced to queue behind all other customers already in the sys- 
tem. In this case, with N customers in the system, (N- l>D time 
units are spent queued behind other customers, D time units are 
spent in service, and Z time units are spent thinking, so that the 
throughput of each customer is l/(ND -I- Z>. Thus, system 
throughput is N/(ND + Z). 

l The largest possible throughput occurs when each additional customer 
is not delayed at all by any other customers in the system. In this case 
no time is spent queueing, D time units are spent in service, and Z 
time units are spent thinking. Thus, the throughput of each customer 
is l/(D+Z), and system throughput is N/(D+Z). 

The above observations can be summarized as the asymptotic bounds on 
system throughput: 

N 
ND + Z 

< X(N) < min (+ “1 
max ’ DfZ 
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Note that the optimistic bound consists of two components, the first of 
which applies under heavy load and the second of which applies under 
light load. As illustrated by Figure 5.1, there is a particular population 
size N” such that for all N less than N” the light load optimistic bound 
applies, while for all N larger than N* the heavy load bound applies. 
This crossover point occurs where the values of the two bounds are equal: 

N” = p 
,?V%Y 

We can obtain bounds on response time R(N) by transforming our 
throughput bounds using Little’s law. We begin by rewriting the previous 
equation: 

N N 
ND + Z ’ R(N)+Z 

Inverting each component to express 

1 < min (- 
D 

“1 
mL7.x ’ D+Z 

the bounds on R (N) yields: 

max (D,,,, , 

or: 

max (D , ND,,, - z) < R(N) < ND 

5.2.3. Summary of Asymptotic Bounds 

Table 5.1 summarizes the asymptotic bounds. Algorithm 5.1 indicates 
the steps by which the asymptotic bounds can be calculated for batch and 
terminal workloads. (The calculations for transaction workloads are 
trivial.) Note that all bounds are straight lines with the exception of the 
pessimistic throughput bound for terminal workloads. Consequently, once 
D and D,,, are known, calculation of the asymptotic bounds expressed 
as functions of the number of customers in the network takes only a few 
arithmetic operations. The amount of computation is independent of 
both the number of centers in the model and the range of customer 
populations of interest. 

5.3. Using Asymptotic Bounds 

In this section we present three applications of asymptotic bounds: a 
case study in which asymptotic bounds proved useful, an assessment of 
the effect of alleviating a bottleneck, and an example of modification 
analysis. 
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workload 
type 

bounds 

batch $ < X(N) 6 min ($, $-I 
max 

N 
ND + Z 

< X(N) 
X terminal 

N < min (------- --J-I 
DfZ ’ D,, 

transaction X(h) < 1 I D,,,,, 

batch max CD, ND,,,,) < R(N) < ND 

R terminal max (D , ND,,, - Z) < R(N) < ND 

transaction D < R(X) 

Table 5.1 - Summary of Asymptotic Bounds 

5.3.1. Case Study 

Asymptotic bound analysis was enlightening in the case study intro- 
duced in Section 2.6. (That section may be reviewed for additional back- 
ground.) 

An insurance company had twenty geographically distributed sites 
based on IBM 3790s that were providing unacceptable response times. 
The company decided to enter a three year selection, acquisition, and 
conversion cycle, but an interim upgrade was required. IBM 8130s and 
8140s both were capable of executing the existing applications software, 
and consequently were considered for use during the three year transition 
period. After discussions with the vendor, the company believed that the 
use of 8130s would result in performance improving by a factor of 1.5 to 
2 over the 3790s while the use of 8140s would lead to performance 
improving by a factor of 2 to 3.5. (No precise statement of the 
significance of the “performance improvement factor” was formulated.) 

A modelling study was initiated to determine those sites at which the 
less expensive 8130 system would suffice. It was known that the 8130 
and 8140 systems both included a disk that was substantially faster than 
that of the 3790. With respect to CPU speed, the 8130 processor was 
slightly slower than the 3790, while the 8140 was approximately 1.5 times 
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(Steps are presented assuming a terminal workload; to treat a 
batch workload, set Z to zero.) 

1. Calculate D= $Dk and D,, = max Dk . 
k=l k 

2. Calculate the intersection point of the components of the op- 
timistic bounds: 

N” = p 
illC7.Y 

3. Bounds on throughput pass through the points: 
optimistic bound : 

(0 , 0) and (1 , & > for N < N’ 

(0, + > and (1 L > for N 2 N” 
M&Y ’ Dmm 

pessimistic bound : 

This bound is not linear in N, and so must be cal- 
culated for each population of interest using the 
equation in Table 5.1. 

4. Bounds on average response time pass through the points: 
optimistic bound : 

(0 , D) and (1 , D> for N < N” 
CO,-Z)and(l,D,,-ZZ) for Na N” 

pessimistic bound : 

(0 , 0) and (1 , D> 

Algorithm 5.1 - Closed Model Asymptotic Bounds 

faster. Through a combination of this information, “live” measurements 
of existing 3790 systems, and benchmark experiments on two of the sys- 
tems (3790 and 8140), the following service demands were determined: 

system 
3790 (observed) 
8130 (estimated) 
8140 (estimated) 

service demands, seconds 
CPU disk 
4.6 4.0 
5.1 1.9 
3.1 1.9 
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Terminals 

CPU Disk 

--I 

Figure 5.2 - Case Study Model 

With the service demands established, a bounding model was used to 
assess the performance to be expected from each of the three systems. 
Figure 5.2 depicts the queueing network. (Although some sites had two 
physical disk drives, the disk controller did not permit them to be active 
simultaneously. For this reason, having only a single disk service center 
in the model is appropriate.) The parameters are: 

- K, the number of service centers (2) ; 
- Dnmx, the largest service demand (4.6 seconds for the 3790, 5.1 for 

the 8130, and 3.1 for the 8140); 
- D, the sum of the service demands (8.6, 7.0, and 5.0, respec- 

tively) ; 
- the type of the customer class (terminal); 
- 2, the average think time (an estimate of 60 seconds was used). 
Applying Algorithm 5.1 to the model of each of the three systems 

leads to the optimistic asymptotic bounds graphed in Figure 5.3. (The 
pessimistic bounds have been omitted for clarity.) These reveal that, at 
heavy loads, performance of the 8130 will be inferior to that of the 3790. 
This is a consequence of the fact that the 8130 has a slower CPU, which 
is the bottleneck device. Thus, rather than a performance gain of 1.5 to 
2, a performance degradation could be expected in moving from 3790s to 
8130s whenever the number of active terminals exceeded some threshold. 
Figure 5.3 indicates a performance gain in moving from 3790s to 8140s 
although not the expected factor of two or more. 

On the basis of the study, additional benchmark tests were done to 
re-assess the advisability of involving 8130s in the transition plan. These 
studies confirmed that the performance of 8130s would be worse than 
that of 3790s when the number of terminals was roughly fifteen or more, 
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Figure 5.3 - Asymptotic Bounds in the Case Study 
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and that the performance gain of 8130s over 3790s at lighter loads would 
be negligible. Consequently, there was no performance reason to invest 
in 8130s for any sites. Eventually the company decided to install 8140s at 
all sites during the transition period. Without the simple modelling 
study, the company might have ordered 8130s without doing benchmark 
tests on them, with disappointing results. (A note of caution: the conclu- 
sions reached in this study would not necessarily hold in a context involv- 
ing a different workload.) 

5.3.2. Effect of Bottleneck Removal 

So far we have been most concerned with the bottleneck center, which 
constrains throughput to be at most l/D,,,,. What happens if we allevi- 
ate that bottleneck, either by replacing the device with a faster one or by 
shifting some of the work to another device? In either case, D,,,,Y is 
reduced and so the throughput optimistic bound, l/D,,,y, increases. A 
limit to the extent of this improvement is imposed by the center with the 
second highest service demand originally. We call this center the secon- 
dary bottleneck, as contrasted with the primary bottleneck. 

Consider a model with three service centers (K=3) and a terminal 
workload with average think time equal to 15 seconds (Z=15) and ser- 
vice demands of 5, 4, and 3 seconds at the centers (D1=5, D2=4, and 
D3=3). Figure 5.4 shows the optimistic asymptotic bounds for this 
example, supplemented by lines indicating the heavy load optimistic 
bounds on performance corresponding to each center. Such a graph pro- 
vides a visual representation of the extent of performance improvement 
possible by alleviating the primary bottleneck. As the load at the 
bottleneck center is reduced, the heavy load optimistic bound on 
throughput moves upwards, while the heavy load optimistic bound on 
average response time pivots downward (about the point (0 , 0) for batch 
workloads and about the point (0 , -Z> for terminal workloads). The 
light load asymptotes also change, but they are much less sensitive to the 
service demand at any single center than are the heavy load asymptotes. 

An important lesson to be learned is the futility of improving any 
center but the bottleneck with respect to enhancing performance at heavy 
load. Reducing the service demand at centers other than the bottleneck 
improves only the light load asymptote, and the improvement usually is 
insignificant. Figure 5.5 compares the effects on the asymptotic bounds 
of independently doubling the speed (halving the service demand) at the 
primary and secondary bottlenecks for this example system. Observe 
that, at heavy load, performance gains only are evident when the demand 
at the primary bottleneck is reduced. 



5.3. Using Asymptotic Bounds 

Throughput: 

0.30 

xw 1 

0.20 

0.10 

4 8 12 16 20 

IV 

I I I I I 

4 8 12 16 20 

N 

Response Time: 

30 

R(N) 

20 

83 

Figure 5.4 - Secondary and Tertiary Asymptotic Bounds 
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Figure 5.5 - Relative Effects of Reducing Various Service Demands 
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5.3.3. Modification Analysis Example 

Here we examine the use of asymptotic bounds to assess the impact of 
modifications to an existing system. Consider a simplified interactive sys- 
tem for which the following measurements have been obtained: 

T = 900 seconds 

B1 = 400 seconds 
B2 = 100 seconds 
B3 = 600 seconds 

C = 200 jobs 
c* = 2,000 
c, = 20,000 

Z = 15 seconds 

length of the measurement interval 

CPU busy 
slow disk busy 
fast disk busy 

completed jobs 
slow disk operations 
fast disk operations 

think time 

The service demands per job are D1=2.0, D,=O.5, and D3=3.0. The 
visit counts to the disks are V,=lO and V,=lOO. The service times per 
visit to the disks are S2= .05 and S3 = .03. We consider four improve- 
ments that can be made to the system. These are listed below, along with 
an indication of how each would be reflected in the parameters of the 
model: 

1. Replace the CPU with one that is twice as fast. D1 - 1 

2. Shift some files from the faster disk to the slower disk, balancing their 
demands. We consider only the primary effect, which is the change in 
disk speed, and ignore possible secondary effects such as the fact that 
the average size of blocks transferred may differ between the two 
disks. The new disk service demands are derived as follows. 
VP+ V, = 110. Because S2= .05 and S,= .03, this is the same as: 

v2s2 v3s3 -+-= 
.05 .03 

110 

Since we wish to have Dz = V,S, = V& = D3: 

1 1 
O2 YE+.03 [ I = 110 

and D2 = D3 = 2.06. Dividing by the appropriate service times, we 
obtain the new visit counts: T/,=41 and Vj=69. 

3. Add a second fast disk (center 4) to handle half the load of the busier 
existing disk. Once again, we consider only the primary effects of the 
change. K - 4, D3 - 1.5, D4 - 1.5 
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4. The three changes made together: the faster CPU and a balanced load 
across two fast disks and one slow disk. Service demands become 
D,=l, D2=1.27, D3=1.27, and D,=1.27. These were derived in a 
manner similar to that employed above. We know that 
V, + V, + V, = 110. To ensure that D2 = D3 = D4: 

v2s2 v3s3 
-+- 

v4s4 

.05 .03 + .03 
- z- 110 

-&+-&+-& 1 = 110 

D2 = D, = D4 = 

Figure 5.6 shows the optimistic asymptotic bounds forthe original sys- 
tem (labelled “None”), for each modification individually (labelled 
“(1)“) “(2>“, and “(3)“) respectively), and for the three in combination 
(labelled “(1) and (2) and (3)“). Intuitively, the first change might 
appear to be the most significant, yet Figure 5.6 shows that this is not 
true. Because the fast disk is the original bottleneck, changes 2 and 3 are 
considerably more influential. Note that change 2 yields almost as much 
improvement as change 3 although it requires no additional hardware. 
The combination of the three modifications yields truly significant results. 

The modification analysis done in this section has involved only 
asymptotic bounds on performance. In Chapter 13 we will consider 
modification analysis once again, using more sophisticated techniques to 
evaluate our models. 

5.4. Balanced System Bounds 

With a modest amount of computation beyond that required for 
asymptotic bounds, tighter bounds can be obtained. These bounds are 
called balanced system bounds because they are based upon systems that 
are “balanced” in the sense that the service demand at every center is 
the same, i.e., Di=D,=D3= . . . =DK. Figures 5.7a and 5.7b show the 
general form of balanced system bounds (together with the asymptotic 
bounds) for batch (5.7a) and terminal (5.7b) workloads. 

We first establish some special properties of balanced systems. We 
then show how these properties can be exploited to determine bounds on 
performance that complement the asymptotic bounds and lead to more 
precise knowledge of system behavior. The derivation of balanced system 
bounds is shown for batch workloads only. The reader is asked to work 
through the derivation for transaction workloads in Exercise 5. Bounds 
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Figure 5.7a - Balanced System Bounds on Performance 
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Figure 5.7b - Balanced System Bounds on Performance 
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for each of batch, terminal, and transaction workload types are given in 
Table 5.2. 

The analysis of balanced systems is a special case of the techniques to 
be presented in Chapter 6. Formally, this analysis requires that various 
assumptions be made about the system being modelled. (These assump- 
tions will be described in Chapter 6.) This is in contrast to asymptotic 
bounds, which require only that the service demand of a customer at a 
center does not depend on how many other customers are currently in 
the system or at which centers they are located. 

For balanced systems, the techniques to be presented in Chapter 6 
have a particularly simple form. The utilization of every service center is 
given by: 

(We do not attempt to justify this now, either intuitively or formally.) By 
the utilization law, system throughput is then: 

X(N) = 2 = N 1 
NfK-1 x z 

where Dk is the service demand at every center. 

Let D,, , Da,,, , and Dmi,, denote respectively the maximum, average, 
and minimum of the service demands at the centers of the model we 
wish to evaluate. We bound the throughput of that system by the 
throughputs of two related balanced systems: one with service demand 
DInin at every center, and the other with service demand D,,, at every 
center: 

N 1 - < X(N) < N 1 
N+K-l ' D,, N+K-1 x Drnin 

These inequalities hold because, of all systems with K centers, N custo- 
mers, and maximum service demand D,,,, the one with the lowest 
throughput is the balanced system with demand D,,,y at each center. 
Similarly, of all systems with K centers, N customers, and minimum 
demand Drnin, the one with the highest throughput is the balanced system 
with demand D,, at each center. Corresponding bounds on average 
response times are: 

(N+ K- 1) D,njn < R(N) < (N+ K-l) D,,,v 
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Tighter balanced system bounds can be obtained by constraining not 
only the maximum service demand, D,,,, but also the total demand, D 
(or equivalently, the averageKdemand, DO,,>. Of all systems with a given 

total service demand D = 2 Dk, the one with the highest throughput 
k=l 

(and the lowest average response time) is the one in which all service 
demands are equal (i.e., Dk = D/K, k = 1 , . . . , K). This confirms our 
intuition that the increase in delay resulting from an increase in load is 
greater than the decrease in delay resulting from an equivalent decrease 
in load. Therefore, optimistic bounds are given by: 

X(N) < N+;-l X + = N 
(I vc D + (N-1) D,,, 

and: 

D + (N-1) D,, < R (N) 

Note that the optimistic balanced system bound intersects the heavy load 
component of the optimistic asymptotic bound (at a point that we will 
denote by Nf). Beyond this point, the balanced system bound is defined 
to coincide with the asymptotic bound. 

Analogously, of all systems with total demand D and maximum 
demand D,,l,, the one with the lowest throughput has D/D,,,, centers 
with demand D,,,, and zero demand at the remaining centers. (The fact 
that DID,,,, may not be an integer hampers intuition, but not the vali- 
dity of the bounds.) Therefore, pessimistic bounds are: 

N 1 
xDl,tax= 

N 

N++-1 D + W- 1) D,,,, 
< X(N) 

,?lM 
and: 

R(N) G D + W-0 D,, 

Table 5.2 summarizes the balanced system bounds for batch, terminal, 
and transaction workloads. Algorithm 5.2 indicates how these bounds can 
be calculated for batch and terminal workloads. (The calculations for 
transaction workloads are trivial.) For batch workloads, the bounds on 
average response time are straight lines. Also, the optimistic bound on 
average response time for terminal workloads is a straight line. However, 
balanced system bounds on throughput and the pessimistic balanced sys- 
tem bound on response time for terminal workloads are not linear in N, 
and thus must be computed separately for each value of N of interest. 
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workload 
type 

batch 

N 

bounds 

D + W-11)D,,, 
< X(N) 

1 < min (- N 
D,, ' D + (N- l>Dove ) 

N 
x (N- l)D,n,, 

< X(N) 

terminal 
D + ’ + l+ Z/(ND) 

1 < min (----- 
D ' max D + z + ";:$$ ) 

transaction X(X> < 1 / D,,,y 

batch 
max (WHO, , D + (N-l)D,,>,) G R(N) 

< D + (N- l>D,,, 

R 
max (ND,n,, - Z , D + 

terminal 
(;;'$;, < R(N) 

(N-l>&,, 
’ D + l+ Z/(ND) 

transaction D 
1 - x0,,, 

< R(h) < lBfD 
mm 

Table 5.2 - Summary of Balanced System Bounds 

5.5. Summary 

In this chapter we have introduced techniques for obtaining bounds on 
the performance measures of systems. The bounds are summarized in 
Tables 5.1 and 5.2, and procedures for calculating them are given in 
Algorithms 5.1 and 5.2. Asymptotic bounds and balanced system bounds 
are important for a number of reasons: 
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1. Calculate the asymptotic bounds using Algorithm 5.1. 
2. Determine the point at which the optimistic balanced system 

bound intersects the optimistic asymptotic bound. For a 
batch workload: 

For a terminal workload: 

N+ = (D+Zj2 - D D,“, 

(D + Z> D,,, - D D,,, 

The optimistic balanced system bound need be calculated 
only from 1 to Nf since it is defined to coincide with the 
asymptotic bound beyond Nf. 

3. Calculate balanced system bounds on average response time. 
For a batch workload, the bounds are lines through the 
points : 

optimistic bound : 

(0, D--D,“,> and (1 , D> 
pessimistic bound : 

(0, D-D,,> and (1, D> 
For a terminal workload, the bounds are lines through the 
points : 

optimistic bound : 

(0, D - 1 ,“2,, > and (1, D> 

pessimistic bound : 

The pessimistic bound for terminal workloads is 
not linear in N, so must be calculated for each po- 
pulation of interest using the equation in Table 5.2. 

4. Calculate balanced system bounds on throughput for the 
range of N of interest using the equations in Table 5.2. 
(Again, these are not linear in N.) 

Algorithm 5.2 - Closed Model Balanced System Bounds 
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l Because they are so simple to calculate, even by hand (they require 
only a few arithmetic operations once D and D,, are known), they 
are a quick way to obtain a rough feel for the behavior of a system. 

l They reveal the critical influence of the bottleneck service center. 
Changes to the system that do not affect the bottleneck center do not 
alter the heavy load bounds on performance. Hence, throughput 
curves for allsystems with bottleneck demand D,,,, are constrained to 
lie below the line l/ D,n,. To improve performance beyond this limit, 
it is necessary to reduce the demand at the bottleneck center in some 
way. 

l Diagrams that show secondary bottlenecks as well as the primary one 
provide insight into the extent of improvements realizable by various 
modifications to the system that reduce the demand on the primary 
bottleneck. 

l In the early phases of system design and system sizing, bounding stu- 
dies offer the advantage that a group of configurations may be able to 
be treated as a single alternative. This is the case because of the criti- 
cal influence of the bottleneck center, noted above. 
Using fundamental laws, bounds on center utilizations and 

throughputs can be calculated from the asymptotic and balanced system 
bounds on system throughput. The system throughput bounds of Tables 
5.1 and 5.2 are transformed into bounds on center k utilization simply by 
multiplying through by Dk (since the utilization law states that 
U,(N) = X(N) Dk). Similarly, bounds on center k throughput are 
obtained by multiplying through by I$ (due to the forced flow law: 
x,(N) = X(N) v,). 

In the chapters that follow, we present methods for calculating specific 
values of performance measures rather than bounds. These values will 
form smooth curves that are asymptotic to the light and heavy load 
optimistic asymptotic bounds and to the pessimistic balanced system 
bounds. 
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5.7. Exercises 

1. In a system serving both batch jobs and terminal users, the following 
observations were made during a 30 minute interval: 

active terminals 40 
think time 20 seconds 
interactive response time 5 seconds 
disk service time per access 20 milliseconds 
disk accesses per batch job 100 
disk accesses per terminal interaction 5 
disk utilization 60% 

a. What is batch throughput? 
b. Using only the information given above, calculate the maximum 

batch throughput possible if interactive response times of 15 
seconds are to be achievable. What assumption must you make in 
answering this question? 
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2. Consider an interactive system with a CPU and two disks. The follow- 
ing measurement data was obtained by observing the system: 

observation interval 
active terminals 
think time 
completed transactions 
fast disk accesses 
slow disk accesses 
CPU busy 
fast disk busy 
slow disk busy 

30 minutes 
30 
12 seconds 
1,600 
32,000 
12,000 
1,080 seconds 
400 seconds 
600 seconds 

a. Determine the visit counts ( vk>, service times per visit (S,), and 
service demands (Dk) at each center. 

b. Give optimistic and pessimistic asymptotic bounds on throughput 
and response time for 5, 10, 20, and 40 active terminals. 

Consider the following modifications to the system: 

1: Move all files to the fast disk. 
2: Replace the slow disk by a second fast disk. 
3: Increase the CPU speed by 50% (with the original disks). 
4: Increase the CPU speed by 50% and balance the disk 

load across two fast disks. 

c. For the original system and for modifications 1 through 4, graph 
optimistic and pessimistic asymptotic bounds on throughput and 
response time as functions of the number of active terminals. 

d. For the original system and for modification 3, specify the max- 
imum number of terminals that can be active such that the asymp- 
totic bounds do not preclude the possibility of an 8 second average 
response time. 

e. If 40 terminals were active on the original system, how much 
would the CPU have to be speeded up so that the bounds would 
not rule out the possibility of achieving 10 second average response 
times? 

f. If 80 terminals were active on the original system, what minimum 
modifications to the system would be required so that the bounds 
would not rule out the possibility of achieving 15 second average 
response times? 

3. An installation with a CPU intensive workload is considering moving 
from a centralized system with a single large CPU to a decentralized 
system with several smaller CPUs. 
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a. Suppose that 10 processors each l/10-th the speed of the large pro- 
cessor can be operated at the same cost as the large processor. Use 
asymptotic throughput and response time bounds to investigate the 
conditions under which such a change clearly would be beneficial 
or detrimental (considering performance issues only). 

b. Suppose that 15 processors each l/10-th the speed of the large pro- 
cessor can be operated at the same cost. How does this affect your 
answer to (a>? 

4. Consider a model with three service centers and service demands 
D1 = 5 seconds, D2 = 4 seconds, and 03 = 3 seconds. 
a. Graph the optimistic and pessimistic asymptotic throughput and 

response time bounds for this model with a batch workload. 
b. On the same graphs, include balanced system bounds for the 

model. 
c. What is the relationship between the two sets of bounds in terms 

of the range of possible values to which they restrict performance 
measures? What is their relationship in terms of computational 
effort? 

d. Repeat your calculations for a terminal class with 15 second think 
times. 

5. The assumptions introduced in deriving balanced system bounds for 
transaction workloads do not result in an improvement over the 
asymptotic bound for system throughput; we still have 
X(x> < l&m. However, they do yield an improved response time 
bound. The key to this improvement is the equation: 

Dk 
hm = 1 - U,(A) 

a. Using this equation, derive optimistic and pessimistic response time 
bounds based on balanced systems in which the service demands at 
all centers are set to D,nin (optimistic) and D,, (pessimistic). 

b. Derive improved bounds by using the fact that the sum of the ser- 
vice demands in the original system is D. (Check your results 
against Table 5.2.) 

c. Compute the value of A,,, for a system with three service centers 
with service demands of 8, 4, and 2 seconds. Sketch the two sets 
of response time bounds you just derived for arrival rates X 
between 0 and A,,,. 


