
Chapter 3 

Fundamental Laws 

3.1. Introduction 

This chapter provides the technical foundation for much of the 
remainder of the book. It has three objectives. The first is to define a 
number of quantities of interest and to introduce the notation that we will 
use in referring to these quantities. The second is to derive various alge- 
braic relationships among these quantities, some of which, because of 
their importance, will be identified as fundamental laws. The third is to 
explore thoroughly the most important of these fundamental laws, Little’s 
law (named for J.D.C. Little), which states that the average number of 
requests in a system must equal the product of the throughput of that 
system and the average time spent in that system by a request. 

Because of the volume of notation introduced, this chapter may appear 
formidable. It is not. The material is summarized in three small tables in 
Section 3.6, which we suggest you copy for convenient reference. 

3.2. Basic Quantities 

If we were to observe the abstract system shown in Figure 3.1 we 
might imagine measuring the following quantities: 

T, the length of time we observed the system 
A, the number of request arrivals we observed 
C, the number of request completions we observed 

From these measurements we can define the following additional quanti- 
ties: 

40 
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Arrivals Completions 
+ 

Figure 3.1 - An Abstract System 

A, the arrival rate: X E 4 

If we observe 8 arrivals during an observation interval of 4 
minutes, then the arrival rate is 8/4 = 2 requests/minute. 

X, the throughput: X E $ 

If we observe 8 completions during an observation interval of 4 
minutes, then the throughput is S/4 = 2 requests/minute. 

If the system consists of a single resource, we also can measure: 
B, the length of time that the resource was observed to be busy 

Two more defined quantities now are meaningful: 

U, the utilization: u&l 
T 

If the resource is busy for 2 minutes during a 4 minute observation 
interval, then the utilization of the resource is 2/4, or 50%. 

S, the average service requirement per request: S E $ 

If we observe 8 completions during an observation interval and the 
resource is busy for 2 minutes during that interval, then on the 
average each request requires 2/8 minutes of service. 

B 
We n;w;an derive the first of our fundamental lay.-Algebpically, 

-?= TC 
- - , From the three preceding definitions, r = U, r E X, 

and B = S Hence. 
C’ ’ 
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The Utilization Law: U = XS 

That is, the utilization of a resource is equal to the product of the 
throughput of that resource and the average service requirement at that 
resource. As an example, consider a disk that is serving 40 
requests/second, each of which requires .0225 seconds of disk service. 
The utilization law tells us that the utilization of this disk must be 
40x .0225 = 90%. 

3.3. Little’s Law 

The utilization law in fact is a special case of Little’s law, which we 
now will derive in a more general setting. Figure 3.2 is a graph of the 
total number of arrivals and completions occurring at a system over time. 
Each step in the higher step function signifies the occurrence of an arrival 
at that instant; each step in the lower signifies a completion. At any 
instant, the vertical distance between the arrival and completion functions 
represents the number of requests present in the system. Over any time 
interval, the area between the arrival and completion functions represents 
the accumulated time in system during that interval, measured in 
request-seconds (or request-minutes, etc.>. For example, if there are 
three requests in the system during a two second period, then six 
request-seconds are accumulated. This area is shaded in Figure 3.2 for an 
observation interval of length T = 4 minutes. We temporarily denote 
accumulated time in system by W. We define: 

N, the average number of requests in the system: N - T 

If a total of 2 request-minutes of residence time are accumulated 
during a 4 minute observation interval, then the average number of 
requests in the system is 2/4 = 0.5. 

R, the average system residence time per request: R E T 

If a total of 2 request-minutes of residence time are accumulated 
during an observation interval in which 8 requests complete, then 
the average contribution of each completing request (informally, 
the average system residence time per request) is 2/8 = 0.25 
minutes. 

W cw Algebraically, T = T c --. ButTEN,$ZX,andTs R. 
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Hence: 

43 

Little’s Law: N = XR 

That is, the average number of requests in a system is equal to the pro- 
duct of the throughput of that system and the average time spent in that 
system by a request. 

-1 
4 6 

Time 

Figure 3.2 - System Arrivals and Completions 

A subtle but important point in our derivation of Little’s law is that 
the quantity R does not necessarily correspond to our intuitive notion of 
average residence time or response time - the expected time from 
arrival to departure. This discrepancy is due to end effects: it is hard to 
know how to account for requests that are present just prior to the start 
or just after the end of an observation interval. For the time being, 
suffice it to say that if the number of requests passing through the system 
during the observation interval is significantly greater than the number 
present at the beginning or end, then R corresponds closely to our intui- 
tion, and if the observation interval begins and ends at instants when sys- 
tem is empty, then this correspondence is exact. (End effects arise 
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elsewhere; for example, considerations similar to those affecting R also 
affect our earlier definition of S, the average service requirement per 
request.) 

Little’s law is important for three reasons. First, because it is so 
widely applicable (it requires only very weak assumptions), it will be 
valuable to us in checking the consistency of measurement data. Second, 
in studying computer systems we frequently will find that we know two of 
the quantities related by Little’s law (say, the average number of requests 
in a system and the throughput of that system) and desire to know the 
third (the average system residence time, in this case>. Third, Little’s 
law is central to the algorithms for evaluating queueing network models, 
which we will introduce in Part II. 

Given a computer system, Little’s law can be applied at many different 
levels: to a single resource, to a subsystem, or to the system as a whole. 
The key to success is consistency: the definitions of population, 
throughput, and residence time must be compatible with one another. In 
Figure 3.3 we illustrate this by applying Little’s law to a hypothetical 
timesharing system at four different levels, as indicated by the four boxes 
in the figure. 
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Figure 3.3 - Little’s Law Applied at Four Levels 
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Box 1 is perhaps the most subtle; it illustrates the application of 
Little’s law to a single resource, nor including its queue. In this example, 
population corresponds to the utilization of the resource (there are either 
zero or one requests present at any instant in time; the resource is util- 
ized whenever there is one request present; thus resource utilization is 
equal to the proportion of time there is one request present, which is also 
equal to the average number of requests present), throughput 
corresponds to the rate at which the resource is satisfying requests, and 
residence time corresponds to the average service requirement per 
request at the resource (remember, queueing delay is not included in this 
application of Little’s law; once a request acquires the resource, it 
remains at that resource for its service time). This application of Little’s 
law constitutes an alternative derivation of the utilization law. To repeat 
the example used previously, suppose that the resource is a disk, that the 
disk is serving 40 requests/second (X = 401, and that the average 
request requires .0225 seconds of disk service (S = .0225). Then Little’s 
law (U = XS> tells us that the utilization of the disk must be 
40x .0225 = 90%. 

Box 2 illustrates the application of Little’s law to the same resource, 
this time including its queue. Now, population corresponds to the total 
number of requests either in queue or in service, throughput remains the 
rate at which the resource is satisfying requests, and residence time 
corresponds to the average time that a request spends at the resource per 
visit, both queueing time and service time. Suppose that the average 
number of requests present is 4 (N = 4) and that the disk is serving 40 
requests/second (X = 40). Then Little’s law (N = XR) tells us that the 
average time spent at the disk by a request must be 4/40 = 0.1 seconds. 
Note that we can now compute the average queueing time of a request (a 
total of 0.1 seconds are spent both queueing and receiving service, of 
which .0225 seconds are devoted to receiving service, so the average 
queueing time must be .0775 seconds) and also the average number of 
requests in the queue (an average total of 4 requests are either queueing 
or receiving service, and on the average there are 0.9 requests receiving 
service, so the average number awaiting service in the queue must be 
3.1). 

Box 3 illustrates the application of Little’s law to the central subsystem 
- the system without its terminals. Our definition of “request” changes 
at this level: we are no longer interested in visits to a particular resource, 
but rather in system-level interactions. Population corresponds to the 
number of customers in the central subsystem, i.e., those users not think- 
ing. Throughput corresponds to the rate at which interactions flow 
between the terminals and the central subsystem. Residence time 
corresponds to our conventional notion of response time: the period of 
time from when a user submits a request until that user’s response is 



46 Preliminaries: Fundamental Laws 

returned. Suppose that system throughput is l/2 interaction per second 
(X = 0.5) and that, on the average, there are 7.5 “ready” users 
(N = 7.5). Then Little’s law (N = XR) tells us that average response 
time must be 7.5/0.5 = 15 seconds. 

Finally, box 4 illustrates the application of Little’s law to the entire 
system, including its terminals. Here, population corresponds to the total 
number of interactive users, throughput corresponds to the rate at which 
interactions flow between the terminals and the system, and residence 
time corresponds to the sum of system response time and user think 
time. Suppose that there are 10 users, average think time is 5 seconds, 
and average response time is 15 seconds. Then Little’s law tells us that 
the system throughput must be 10 - = 0.5 interactions/second. If we 

15+5 
denote think time by 2 then we can write this incarnation of Little’s law 
as N = X(R + Z>. As with the utilization law, this application is so ubi- 
quitous that we give it its own name and notation, expressing R in terms 
of the other quantities: 

The Response Time Law: R = $ - Z 

As an example application of the response time law, suppose that a sys- 
tem has 64 interactive users, that the average think time is 30 seconds, 
and that system throughput is 2 interactions/second. Then the response 

64 time law tells us that response time must be - - 30 = 2 seconds. 
2 

In earlier chapters we have noted that throughputs and utilizations 
typically are projected with greater accuracy than residence times. We 
now are in a position to understand why this must be. Suppose we were 
to construct a queueing network model of the system in the previous 
example. The number of users (64) and the average think time (30 
seconds) would be parameters of the model, along with the service 
demands at the various resources in the system. Throughput and 
response time would be outputs of the model. Suppose that the model 
projected a throughput of 1.9 interactions/second, an error of just 5%. 
Since the response time law must be satisfied by the queueing network 
model, a compensating error in projected response time must result: 

R = 64-30 
1.9 

Thus the model must project a response time of 3.7 seconds, an error of 
85%. 
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3.4. The Forced Flow Law 

In discussing Little’s law, we allowed our field of view to range from 
an individual resource to an entire system. At different levels of detail, 
different definitions of “request” are appropriate. For example, when 
considering a disk, it is natural to define a request to be a disk access, and 
to measure throughput and residence time on this basis. When consider- 
ing an entire system, on the other hand, it is natural to define a request 
to be a user-level interaction, and to measure throughput and residence 
time on this basis. 

The relationship between these two views of a system is expressed by 
the forcedJ¶ow law, which states that the flows (throughputs) in all parts 
of a system must be proportional to one another. Suppose that during an 
observation interval we count not only system completions, but also the 
number of completions at each resource. We define the visit count of a 
resource to be the ratio of the number of completions at that resource to 
the number of system completions, or, more intuitively, to be the aver- 
age number of visits that a system-level request makes to that resource. 
If we let a variable with the subscript k refer to the k-th resource (a vari- 
able with no subscript continues to refer to the system as a whole), then 
we can write this definition as: 

V,, the visit count of resource k: ck V, S 7 

If during an observation interval we measure 10 system comple- 
tions and 150 completions at a specific disk, then on the average 
each system-level request requires 150/10 = 15 disk operations. 

If we rewrite this definition as ck = vk c and recall that the completion 
count divided by the length of the observation interval is defined to be 
the throughput, then the throughput of resource k is given by: 

The Forced Flow Law: Xk = V,X 

An informal statement of the forced flow law is that the various com- 
ponents of a system must do comparable amounts of work (measured in 
“transaction’s worth”) in a given time interval. As an example, suppose 
we are told that each job in a batch processing system requires an average 
of 6 accesses to a specific disk, and that the disk is servicing 12 requests 
from batch jobs per second. Then we know that the system throughput 
of batch jobs must be 12/6 = 2 jobs/second. If, in addition, we are told 
that another disk is servicing 18 batch job requests per second, then we 
know that each batch job requires on average 18/2 = 9 accesses to this 
second disk. 
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Little’s law becomes especially powerful when combined with the 
forced flow law. As an example, suppose that we are asked to determine 
average system response time for an interactive system with the following 
known characteristics: 

25 terminals (N = 25) 
18 seconds average think time (Z = 18) 
20 visits to a specific disk per interaction ( Vdisk = 20) 
30% utilization of that disk (U,,, = .30) 
25 millisecond average service requirement per visit 

to that disk (Sdrsk = .025 sets.> 

We would like to apply the response time law: R = $ - Z. We know 

the number of terminals and the average think time, but are missing the 
throughput. We do, however, know the visit count at one specific disk 
(that is, the average number of visits made to that disk by an interactive 
request), so if we knew the throughput at that disk we would be able to 
apply the forced flow law to obtain system-level throughput. To obtain 
disk throughput we can use the utilization law, since we know both utili- 
zation and service requirement at this device. We calculate the following 
quantities: 

udisk disk throughput: X& = 7 = a!-_ 12 requestslsec. 
d,sk .025- 

xdisk 12 system throughput: X = I/ = - = 0.6 interactions/set. 
dsk 20 

response time: R = 5 - Z = & - 18 = 23.7 sets. 

Note that we can describe an interaction’s disk service requirement in 
either of two ways: by saying that an interaction makes a certain number 
of visits to the disk and requires a certain amount of service on each visit, 
or by specifying the total amount of disk service required by an interac- 
tion. These two points of view are equivalent, and whichever is more 
convenient should be chosen. We define: 

Dk, the WViCe demand at resource k: Dk S vk& 

If a job makes an average of 20 visits to a disk and requires an 
average of 25 milliseconds of service per visit, then that job re- 
quires a total of 20 X 25 = 500 milliseconds of disk service, so its 
service demand is 500 milliseconds at that disk. 

From now on we Will use Sk t0 refer t0 the SerViCe reqUirement per visit 
at resource k, and Dk to refer to the total service requirement at that 
resource. We define D, with no subscript, to be the sum of the Dk: the 
total service demanded by a job at all resources. 
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Again, consistency is crucial to success. Consider using the utilization 
law to calculate the utilization of a resource. We can express throughput 
in terms of visits to that resource (X,1, in which case service requirement 
must be expressed as service requirement per visit (Sk>. Using the 
forced flow law, we can also express throughput in terms of system-level 
interactions (X1, in which case service requirement must be expressed on 
a per-interaction basis (Dk). In other words, U, = X,S, = X0,. 

In Chapter 1 we observed that service demands are one of the parame- 
ters required by queueing network models. If we observe a system for an 
interval of length T, we can easily obtain the utilizations of the various 
resources, uk, and the system-level completion count, C. The service 
demands at the various resources then can be calculated as 

& 
Dk = c 

uk T -=- 

c * 
It is fortunate that queueing network models can 

be parameterized in terms of the Dk rather than the corresponding vk 
and Sk, since the former typically are much more easily obtained from 
measurement data than the latter. 

As a final illustration of the versatility of Little’s law in conjunction 
with the forced flow law, consider Figure 3.4, which represents a 
timesharing system with a memory constraint: swapping may occur 
between interactions, so a request may be forced to queue for a memory 
partition prior to competing for the resources of the central subsystem. 
As indicated by the boxes, we once again are going to apply Little’s law at 
several different levels. The following actual measurement data was 
obtained by observing the timesharing workload on a system with several 
distinct workloads: 

average number of timesharing users: 23 (N = 23) 
average response time perceived by a user: 30 seconds CR = 30) 
timesharing throughput: 0.45 interactions/second (X = .45) 
average number of timesharing requests occupying memory: 1.9 

(fl, mem = 1.9) 
average CPU service requirement per interaction: 0.63 seconds 

(DCpu = .63) 

Now, consider the following questions: 
0 What was the average think time of a timesharing user? Applying the 

response time law at the level of box 4 in the figure, R = $ - Z, 

23 
so Z = - - 30, or 21 seconds. 

.45 
0 On the average, how many users were attempting to obtain service, 

i.e., how many users were not “thinking” at their terminals? Apply- 
ing Little’s law at the level of box 3, N,oani mem = XR = .45X 30, or 
13.5 users. Of the 23 users on this system, an average of 13.5 were 
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Figure 3.4 - Little’s Law Applied to a Memory Constrained System 

attempting to obtain service at any one time. We know from meas- 
urement data that only 1.9 were occupying memory on the average, so 
the remaining 11.6 must have been queued awaiting access to 
memory. 

0 On the average, how much time elapses between the acquisition of 
memory and the completion of an interaction? Applying Little’s law 
at the level of box 2, N/, mern = XR,,, ,Hem, so R,,, ,nen, = 1.9/0.45, or 
4.2 seconds. In other words, of the 30 second response time per- 
ceived by a user, nearly 26 seconds are spent queued awaiting access 
to memory. 

l What is the contribution to CPU utilization of the timesharing work- 
load? Applying the utilization law to the CPU (box 11, 
U CPU = XDCPU = .45X .63, or 28% of the capacity of the CPU. 
Notice that in this application of the utilization law, throughput was 
defined in terms of system-level interactions and service requirement 
was defined on a per-interaction basis. 
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3.5. The Flow Balance Assumption 

Frequently it will be convenient to assume that systems satisfy the 
flow balance property, namely, that the number of arrivals equals the 
number of completions, and thus the arrival rate equals the throughput: 

The Flow Balance Assumption: A = C, therefore A = X 

The flow balance assumption can be tested over any measurement inter- 
val, and it can be strictly satisfied by careful choice of measurement inter: 
val. 

When used in conjunction with the flow balance assumption, Little’s 
law and the forced flow law allow us to calculate device utilizations for 
systems whose workload intensities are described in terms of an arrival 
rate. In Figure 3.5 we show a queueing network model similar to that 
used to represent the VAX-11/780 in the case study described in Section 
2.4. There are three devices (a CPU and two disks) and three transaction 
classes with the following characteristics: 

service demand, 
seconds/transaction 

transaction arrival rate 
class trans./hr. CPU disk 1 disk 2 

compilation 480 2.0 0.75 0.25 
execution 120 11.9 5.0 5.7 

editing session 600 0.5 0.2 0.6 

To calculate the utilization of a device in this system we apply the util- 
ization law separately to each transaction class, then sum the results. As 
an example, consider the CPU. If compilation transactions are arriving to 
the system at a rate of 480/hour and each one brings 2.0 seconds of work 
to the CPU, then CPU utilization due to compilation transactions must 

equal 480 - x 2.0 = 27%. Similar arguments for execution and editing 
3600 

transactions yield CPU utilizations of 40% and 8%, respectively. Thus 
total CPU utilization must be 75%. 

How is it possible to analyze the classes independently without 
accounting for their mutual interference? Assuming that the system is 
able to handle the offered load (i.e., assuming that the calculated utiliza- 
tion of no device is greater than lOO%>, the flow balance assumption is 
reasonable. Thus the throughput of the system will be the same as the 
arrival rate to the system. The forced flow law guarantees that the vari- 
ous devices in the system will do comparable amounts of work (measured 
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Figure 3.5 - Calculating Utilizations Using Flow Balance 

in “transaction’s worth”) in a given time. Interference between transac- 
tions does not affect this. Rather, it causes an increase in the average 
number of transactions resident in the system, which causes a 
corresponding increase in response time (by Little’s law). In Part II we 
will learn how to quantify the extent of this interference. 

3.6. Summary 

In this chapter we have defined a number of quantities of interest, 
introduced the notation that we will use in referring to these quantities, 
and derived various algebraic relationships among these quantities. These 
developments are reviewed in the following tables, which we suggest you 
copy for convenient reference. 

Table 3.1 summarizes the notation that we have established. The 
table includes a subscript on those quantities that require one, either 
explicit or implicit. In some cases, the quantity must refer to a specific 
resource. In other cases, the quantity may refer either to a specific 
resource or to a specific subsystem. Table 3.2 summarizes the fundamen- 
tal laws. Table 3.3 summarizes the additional algebraic relationships 
among the various quantities that we have defined. We also have intro- 
duced and used the flow balance assumption: A = C, therefore h = X. 



3.7. References 53 

T 
Ak 

ck 

hk 

xk’ 

Bk 

uk 

sk 

N 
& 

z 

vk 

Dk 

length of an observation interval 
number of arrivals observed 
number of completions observed 
arrival rate 
throughput 
busy time 
utilization 
service requirement per visit 
customer population 
residence time 
think time of a terminal user 
number of visits 
service demand 

Table 3.1 - Notation 

The Utilization Law: u, = &Sk = x0, 

Little’s Law: N = XR 

The Response Time Law: f+-z 

The Forced Flow Law: x, = v,x 

Table 3.2 - Fundamental Laws 

3.7. References 

Buzen and Denning’s operational analysis has heavily influenced our 
philosophy in general, and this chapter in particular. Much of the nota- 
tion and the identification of laws and assumptions is taken from their 
work. Of special note are [Buzen 19761 (from which we have even bor- 
rowed the title of this chapter) and [Denning & Buzen 19781. 

Little’s law is named for J.D.C. Little, who first proved it in 1961 [Lit- 
tle 19611. 
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Table 3.3 - Additional Relationships 
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Peter J. Denning and Jeffrey P. Buzen. The Operational Analysis of 
Queueing Network Models. Computing Surveys 10,3 (September 
1978), 225-261. 

[Little 19611 
J.D.C. Little. A Proof of the Queueing Formula L = A W. Opera- 
tions Research 9 (19611, 383-387. 

3.8. Exercises 

1. Consider the specific computer system with which you are most fami- 
liar. How would you calculate the basic service demand Dk at the 
CPU? At each disk device? How would you calculate the average 
number of jobs in memory? 

2. Software monitor data for an interactive system shows a CPU utiliza- 
tion of 75%, a 3 second CPU service demand, a response time of 15 
seconds, and 10 active users. What is the average think time of these 
users? 
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3. An interactive system with 80 active terminals shows an average think 
time of 12 seconds. On average, each interaction causes 15 paging 
disk accesses. If the service time per paging disk access is 30 ms. and 
this disk is 60% busy, what is the average system response time? 

4. Suppose an interactive system is supporting 100 users with 15 second 
think times and a system throughput of 5 interactions/second. 
a. What is the response time of the system? 
b. Suppose that the service demands of the workload evolve over time 

so that system throughput drops to 50% of its former value (i.e., to 
2.5 interactions/second). Assuming that there still are 100 users 
with 15 second think times, what would their response time be? 

c. How do you account for the fact that response time in (b) is more 
than twice as large as that in (a)? 

5. Consider a system modelled as shown in Figure 3.6. A user request 
submitted to the system must queue for memory, and may begin pro- 
cessing (in the central subsystem) only when it has obtained a 
memory partition. 

Terminals 

queue 

Figure 3.6 - A Memory Constrained System 

a. If there are 100 active users with 20 second think times, and sys- 
tem response time (the sum of memory queueing and central sub- 
system residence times) is 10 seconds, how many customers are 
competing for memory on average? 
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b. If memory queueing time is 8 seconds, what is the average number 
of customers loaded in memory? 

6. In a 30 minute observation interval, a particular disk was found to be 
busy for 12 minutes. If it is known that jobs require 320 accesses to 
that disk on average, and that the average service time per access is 25 
milliseconds, what is the system throughput (in jobs/second)? 

7. Consider a very simple model of a computer system in which only the 
CPU is represented. Use Little’s law to argue that the minimum aver- 
age response time for this system is obtained by scheduling the CPU 
so that it always serves the job with the shortest expected remaining 
service time (i.e., the job that is expected to finish soonest if placed in 
service). 

8. Consider the following measurement data for an interactive system 
with a memory constraint: 

length of measurement interval: 
average number of users: 
average response time: 
average number of memory-resident requests: 
number of request completions: 
utilizations of: 

CPU 
Disk 1 
Disk 2 
Disk 3 

a. What was throughput (in requests / second)? 
b. What was the average “think time”? 

1 hour 
80 
1 second 
6 
36,000 

75% 
50% 
50% 
25% 

c. On the average, how many users were attempting to obtain service 
(i.e., not “thinking”)? 

d. On the average, how much time does a user spend waiting for 
memory (i.e., not “thinking” but not memory-resident) ? 

e. What is the average service demand at Disk l? 


