
quantum parts together, one gets a
notion of the algorithm—the quan-
tum algorithm—whose computation-
al power appears to be fundamentally
more efficient at carrying out certain
tasks than algorithms written for
today’s, nonquantum, computers.
Could this possibly be true: that there
is a more fundamental notion of algo-
rithmic efficiency for computers built
from quantum components? And, if
this is true, what exactly is the power
of these quantum algorithms?

The shot that rang round the compu-
tational world announcing the arrival
of the quantum algorithm was the 1994
discovery by Peter Shor that quantum
computers could efficiently factor nat-
ural numbers and compute discrete
logarithms.24 The problem of finding
efficient algorithms for factoring has
been burning the brains of mathema-
ticians at least as far back as Gauss
who commented upon the problem
that “the dignity of science seems to
demand that every aid to the solution
of such an elegant and celebrated
problem be zealously cultivated.” Even
more important than the fact that
such a simple and central problem has
eluded an efficient algorithmic solu-
tion is that the lack of such an efficient
algorithm has been used as a justifica-
tion for the security of public key cryp-
tosystems, like RSA encryption.23 Shor’s
algorithm, then, didn’t just solve a
problem of pure academic interest, but
instead ended up showing how quan-
tum computers could break the vast
majority of cryptographic protocols in
widespread use today. If we want the
content of our publicly key encrypted
messages to remain secret not only
now, but also in the future, then Shor’s
algorithm redefines the scope of our
confidence in computer security: we
communicate securely, today, given
that we cannot build a large scale
 quantum computer tomorrow.

Given the encryption breaking pow-
ers promised by quantum comput-
ers, it was natural that, in the decade
 following Shor’s discovery, research
has focused largely on whether a

it is impossible to imagine today’s technological
world without algorithms: sorting, searching,
calculating, and simulating are being used
every where to make our everyday lives better. But
what are the benefits of the more philosophical
endeavor of studying the notion of an algorithm
through the perspective of the physical laws of
the universe? This simple idea, that we desire
an understanding of the algorithm based upon
physics seems, upon first reflection, to be nothing
more than mere plumbing in the basement of
computer science. That is, until one realizes
that the pipes of the universe do not seem to
behave like the standard components out of
which we build a computer, but instead obey the
counterintuitive laws of quantum theory. And,
even more astoundingly, when one puts these

Recent
Progress in
Quantum
Algorithms

Doi:10.1145/1646353.1646375

What quantum algorithms outperform
classical computation and how do they do it?

BY DAVe BAcon AnD Wim VAn DAm

review articles

84 communicAtions of the Acm | FeBrUAry 2010 | vOl. 53 | nO. 2

i
L

L
U

S
t

r
a

t
i

o
N

 b
y

 M
o

N
D

o
L

i
t

h
i

c
 S

t
U

D
i

o
S

FeBrUAry 2010 | vOl. 53 | nO. 2 | communicAtions of the Acm 85

86 communicAtions of the Acm | FeBrUAry 2010 | vOl. 53 | nO. 2

review articlesreview articles

quantum computer could be built.
While there currently appear to be no
fundamental obstacles to ward build-
ing a large scale quantum computer
(and even more importantly, a
result known as the “threshold
theorem”1, 16–18, 25 shows that quan-
tum computers can be made resil-
ient against small amounts of noise,
thereby con firming that these are
not analog machines), the engineer-
ing challenges posed to build an RSA
breaking quantum computer are
severe and the largest quantum com-
puters built to date have less than
10 quantum bits (qubits).13, 19 But
regardless of the progress in build-
ing a quantum computer, if we are to
seriously consider our understanding
of computation as being based upon
experimental evidence, we will have
to investigate the power of quantum
algorithms. Christos Papadimitriou
said in a recent interview26 that the
theory of computational complexity is
such a difficult field because it is nearly
impossible to prove what everyone
knows from experience. How, then,
can we even begin to gain an under-
standing of the power of quantum
computers if we don’t have one from
which to gain such an experience?
Further, and perhaps even more chal-
lenging, quantum algorithms seem to
be exploiting the very effects that make
quantum theory so uniquely counter-
intuitive.6 Designing algorithms for
a quantum computer is like building
a car without having a road or gas to
take it for a test drive.

In spite of these difficulties, a
group of intrepid multidisciplinary
 researchers have been tackling the
question of the power of quantum
algorithms in the decades since Shor’s
discoveries. Here we review recent
progress on the upper bounding side
of this problem: what new quantum
algorithms have been discovered
that outperform classical algorithms
and what can we learn from these
discoveries? Indeed, while Shor’s
factoring algorithm is a tough act to
follow, significant progress in quan-
tum algorithms has been achieved.
We concentrate on reviewing the
more recent progress on this prob-
lem, skipping the discussion of early
(but still important) quantum algo-
rithms such as Grover’s algorithm12

for searching (a quantum algorithm
that can search an unstructured space
quadratically faster than the best clas-
sical algorithm), but explaining some
older algorithms in order to set con-
text. For a good reference for learn-
ing about such early, now “classic”
algorithms (like Grover’s algorithm
and Shor’s algorithm) we refer the
reader to the textbook by Nielsen and
Chuang.21 Our discussion is largely
ahistoric and motivated by attempt-
ing to give the reader intuition as to
what motivated these new quantum
algorithms. Astonishingly, we will see
that progress in quantum algorithms
has brought into the algorithmic fold
basic ideas that have long been foun-
dational in physics: interference,
scattering, and group representation
theory. Today’s quantum algorithm
designers plunder ideas from physics,
mathematics, and chemistry, weld
them with the tried and true methods
of classical computer science, in order
to build a new generation of quantum
contraptions which can outperform
their classical counterparts.

Quantum theory in a nutshell
Quantum theory has acquired a reputa-
tion as an impenetrable theory acces-
sible only after acquiring a significant
theoretical physics background. One
of the lessons of quantum comput-
ing is that this is not necessarily true:
quantum computing can be learned
without mastering vast amounts of
physics, but instead by learning a few
simple differences between quantum
and classical information. Before dis-
cussing quantum algorithms we first
give a brief overview of why this is true
and point out the distinguishing fea-
tures that separate quantum informa-
tion from classical information.

To describe a deterministic n-bit
system it is sufficient to write down its
configuration, which is simply a binary
string of length n. If, however, we have
n-bits that can change according to pro-
babilistic rules (we allow randomness
into how we manipulate these bits), we
will instead have to specify the prob-
ability distribution of the n-bits. This
means to specify the system we require
2n positive real numbers describing
the probability of the system being in a
given configuration. These 2n numbers
must sum to unity since they are, after

all, probabilities. When we observe
a classical system, we will always find it
to exist in one particular configuration
(i.e. one particular binary string) with
the probability given by the 2n num-
bers in our probability distribution.

Now let’s turn this approach to
quantum systems, and consider a
system made up of n qubits. Again, n
qubits will have a configuration which
is just a length n binary string. When
you observe n qubits you will only see
an n bit configuration (thus when you
hear someone say that a qubit is both
zero and one at the same time you
can rely on your common sense tell
them that this is absurd). But now,
instead of describing our system by 2n
probabilities, we describe a quantum
 system by 2n amplitudes. Amplitudes,
unlike probabilities (which were
positive real numbers and which
summed to unity), are complex num-
bers which, when you take their abso-
lute value-squared and add them up,
sum to unity. Given the 2n amplitudes
describing a quantum system, if you
observe the system, you will see a par-
ticular configuration with a probabil-
ity given by the modulus squared of
the amplitude for that configuration.
In other words, quantum systems are
described by a set of 2n complex num-
bers that are a bit like square roots of
probabilities (see Figure 1).

So far we have just said that there is
this different description for quantum
systems, you describe them by ampli-
tudes and not by probabilities. But
does this really have a consequence?
After all the amplitudes aren’t used so
far, except to calculate probabilities.
In order to see that yes, indeed, it does

figure 1. classical versus
quantum information.

On the left, the classical bit is described by two
nonnegative real numbers for its probabilities
Pr(0) = 1/3 and Pr(1) = 2/3. The quantum bit
on the right, instead, has two complex valued
amplitudes that give the (same) probabilities by
taking the absolute value-squared of its entries.
When a quantum system has such a description
with nonzero amplitudes, one says that the
system is in a superposition of the 0 and 1
configurations.

Classical bit:
2
3

1
3

Quantum bit:

−1
3

1+i

Ö

3Ö

review articles

FeBrUAry 2010 | vOl. 53 | nO. 2 | communicAtions of the Acm 87

have a profound consequence, we
must next describe how to update our
description of a system as it changes
in time. One can think about this as
analyzing an algorithm where informa-
tion in our computing device changes
with time according to a set of specific
recipe of changes.

For a classical probabilistic com-
puting device we can describe how
it changes in time by describing the
conditional probability that the sys-
tem changed into a new configuration
 given that it was in an old configura-
tion. Such a set of conditional prob-
abilities means that we can describe
a probabilistic computing action by
a stochastic matrix (a matrix whose
entries are positive and whose col-
umns sum to unity). A classical proba-
bilistic algorithm can then be viewed
as just a set of stochastic matrices
describing how probabilities propa-
gate through the computing device.
If the classical probabilistic algo-
rithm starts with n bits and ends with
m bits, then the stochastic matrix
describing the algorithm will be a 2m
by 2n matrix.

What is the analogous procedure
for a quantum system? Well instead of
specifying conditional probabilities of
a new configuration given an old con-
figuration, in a quantum system you
need to specify the conditional ampli-
tude of a new configuration given an
old configuration. In the quantum
world, the matrix of conditional ampli-
tudes has two major differences from
the classical probabilistic setting. The
first is that quantum systems evolve
reversibly and thus the matrix is 2n by
2n (corresponding to the amplitude
of every configuration to change into
any other configuration). The second
is that, in order to preserve the sum
of the squares of those amplitudes,
which should be 1 throughout, this
matrix is a unitary matrix, meaning
the entries of the matrix are complex
numbers, and that the rows (and col-
umns) of this matrix are orthonormal.
Thus a quantum algorithm for a quan-
tum system is given by a unitary matrix
of conditional amplitudes.

What consequence does this change
from probabilities to amplitudes
and from stochastic matrices to uni-
tary matrices have for the notion of
an algorithm? This is, of course, the

essential question at hand when con-
sidering quantum algorithms. In
this survey we single out three major
differences—quantum interference,
the deep relationship between sym-
metries and quantum mechanics, and
quantum entanglement—and show
how they are related to recent prog-
ress in quantum algorithms.

interference and the Quantum
Drunkard’s Walk
The first of our claimed differences
between quantum computers and clas-
sical computers was that the former
led to effects of quantum interference.
What is interference and how can it
lead to new efficient algorithms?

To illustrate the ideas of interfer-
ence, consider a random walk on a
line. The standard, classical drunk-
ard’s walk on a line refers to situation
where the walker is allowed to step
either forward or backward with equal
probability every unit time step. When
starting at position 0 at time zero,
then after one time step there is an
equal probability to be at locations +1
and −1. After the next time step, there
is a one-fourth probability of being at
positions −2 and 2 and one half prob-
ability of being at position 0. Notice
here that the probability of reaching
zero was the sum of two probabili-
ties: the probability that the drunkard
got to 0 via 1 and the probability that
it got to 0 via −1. Random walks on
structures more complicated than a
line are a well-known tool in classical
algorithms.

Suppose that we want to construct
a quantum version of this drunkard’s
walk. To specify a quantum walk, we
need, instead of a probability for tak-
ing a step forward or backward, an
amplitude for doing this. However we
also need to make sure that the unitary
nature of quantum theory is respected.
For example, you might think that the
quantum analogy of a classical walk is to
take a step forward and a step backward
with amplitude one over the square root
of two (since squaring this gives a prob-
ability of one half). If we start at 0, then
after one step this prescription works:
we have equal amplitude of one over
square root of two of being at either
1 or −1. If we measure the walker after
this first step, the probability of being
at 1 or −1 is both one half. But if we run

this for another time step, we see that
we have an amplitude of ½ to be at
−2 or 2 and an amplitude 1 to be at 0.
Unfortunately if we square these num-
bers and add them up, we get a num-
ber greater than unity, indicating that
the evolution we have described is not
unitary.

The solution to this problem is to
let the drunkard flip a quantum coin at
each time step, after which he steps in
the direction indicated by the quantum
coin. What is a quantum coin? A quan-
tum coin is simply a qubit whose two
configurations we can call “forward”
and “backward” indicating the direc-
tion we are supposed to move after flip-
ping the quantum coin. How do we flip
such a coin? We apply a unitary trans-
form. This unitary transform must
specify four amplitudes. One choice of
such a unitary transform that seems to
mimic the drunkard’s walk is to assign
all conditional amplitudes a value of
one over the square root of two, with the
exception of the amplitude to change
from the configuration “forward” to
the configuration “backward,” which,
due to unitarity, we assign the ampli-
tude negative one over square root of
two. In other words the unitary trans-
form we apply to flip the coin is speci-
fied by the transition matrix

(1)

If we follow this prescription for a
quantum random walk with the drunk-
ard initially positioned at zero, one
quickly sees that something strange
happens. Consider, for instance, the
probability distribution formed by
the quantum walk had we measured
the walker’s position after three time
steps (see Figure 2). Then the probabil-
ity of getting to +1 for the drunkard is 1⁄8.
For a classical walk the similar num-
ber would be 3⁄8. What is going on
here? Well if you trace back how he
could have gotten to +1 in three steps,
you’ll see that there are three paths it
could have used to get to this position.
In the classical world each of these is
 traversed with equal probability, add-
ing a contribution of 1⁄8 for each step.

88 communicAtions of the Acm | FeBrUAry 2010 | vOl. 53 | nO. 2

review articles

But in the quantum world, two of these
paths contribute equal but oppositely
to the amplitude to get to this position.
In other words these two paths inter-
fere with each other. Because ampli-
tudes, unlike probabilities, don’t have
to be positive numbers, they can add
up in ways that cancel out. This is the
effect known as quantum interfer-
ence. It is the same interference idea
which you see when two water waves
collide with each other. But note an
important difference here: ampli-
tudes squared are probabilities. In
water waves, the heights interfere, not
anything related to the probabilities
of the waves. This is the peculiar effect
of quantum interference.

Quantum random walks were actu-
ally first described by physicists in
1993,2 but only with the rise of interest
in quantum computers was it asked
whether these walks could be used as
a computational tool. An alternative,
continuous time version of these algo-
rithms (tacking more closely to ideas
in physics) has also been developed
by Farhi and Gutmann.9 Given these
quantum random walks, a natural
question is what does this have to do
with algorithms? Well, the first obser-
vation is that quantum random walks
behave in strange ways. For instance a
well-known property of classical ran-
dom walks on a line is that the expected
standard deviation of a random walk
as a function of the number of steps
taken, T, scales like the square root
of T. However, for a quantum random
walk the standard deviation can actu-
ally spread linearly with T. Remarkably,
this difference has been well known
to physicists for a long time: it turns
out that the quantum random walk

defined above is closely related to the
Dirac equation for a one-dimensional
electron (the Dirac equation is a way
to get quantum mechanics to play
nicely with the special theory of rela-
tivity, and is a basic equation used in
modern quantum field theory). This
discovery that quantum algorithms
seem to explore space quadratically
faster than classical random walks has
recently been shown to lead to quan-
tum algorithms that polynomially out-
perform their classical cousins.

One example of an algorithm based
upon quantum random walks is the
algorithm for element distinctness
due to Ambainis.3 The element dis-
tinctness problem is, given a function
f from {1, 2, …, N} to {1, 2, …, N} deter-
mine whether there exists two indices
i ¹ j such that f (i) = f (j). Classically

this requires W(N) queries to the
function f. Ambainis showed how a
quantum random walk algorithm for
this problem could be made to work
using O(N2/3) queries: an improvement
which has not been achieved using
any other quantum methods to date.
Other algorithms that admit speed-
ups of a similar nature by using quan-
tum random walks are spatial search
(searching a spatially d-dimensional
space),4 triangle finding,20 and verify-
ing matrix products.7 Quantum ran-
dom walks algorithms, then, are a
powerful tool for deriving new quan-
tum algorithms.

These examples all achieved poly-
nomial speedups over the best pos-
sible classical algorithms. Given that
quantum random walks can be used
to polynomially outperform classical
computers at some tasks, a natural
question is whether quantum com-
puters can be used to exponentially
outperform classical computers. The
answer to this question was first given
by Childs et al.,8 who showed that a
quantum random walk could traverse
a graph exponentially faster than any
possible classical algorithm walking
on this graph. In Figure 3 we show the
graph in question: the crux of the idea
is that a quantum algorithm, by con-
structively or destructively interfering,
can traverse this graph, while a clas-
sical algorithm will always get stuck
in the middle of the graph. Construc-

figure 2. classical (top) and quantum (bottom) random walks.

The probability of reaching a particular point in space and time, given
that we measure the position at that time, is listed on the vertices.

–5 –4 –3 –2 –1 0 1
0

1

2

3

4

5

1

1/2 1/2

1/4 1/2 1/4

1/8

1/16 5/8 1/8 1/8 1/16

1/32 17/32 1/8 1/8 5/32 1/32

Time

Space

5/8 1/8 1/8

2 3 4 5–5 –4 –3 –2 –1 0 1
0

1

2

3

4

5

1

1/2 1/2

1/4 1/2 1/4

1/8

1/16 1/4 3/8 1/4 1/16
1/32 5/32 5/16 5/16 5/32 1/32

Time

Space

3/8 3/8 1/8

2 3 4 5

figure 3. An example of a graph arising in the quantum random walk problem
considered by childs et al.8

In this problem one is given access to a
function that takes as input a vertex and
returns a list of the vertex’s neighbors. The
goal of the problem considered by Childs et
al. is, by querying the function as few times
as possible, traverse from the start vertex
to the end vertex. The graphs considered
are two full binary trees pasted together
with a random cycle (in the example, the
cycle resides inside the dashed box) whose
roots are the start and end vertices. The
quantum algorithm starts at the start
vertex and then performs a quantum
diffusion to the end vertex. The random
cycle in the middle does not destroy this
diffusion, since all paths contribute equally
to this diffusion. For a graph of depth d,
the quantum walk will find the end vertex
by querying the local vertex function a
polynomial number of times in d. The best
classical algorithm can be shown to require
querying the function for local vertex
information exponentially many times in d.

Start End

review articles

FeBrUAry 2010 | vOl. 53 | nO. 2 | communicAtions of the Acm 89

tive interference refers to the condi-
tion where quantum evolution causes
amplitudes to increase in absolute
magnitude (and hence in probability)
while destructive interference refers to
where the evolution causes amplitudes
to decrease in absolute magnitude
(and hence decrease in probability).
In spite of this success, the above
problem, traversing this graph, does
not appear to have a good algorithmic
use. Thus a subject of great research
interest today is whether there are
quantum random walk algorithms
that offer exponential speedups over
classical algorithms for interesting
algorithmic problems.

Quantum Algorithms
and Game Playing
Quantum interference, the ability of
multiple computational paths to add
or detract amplitudes and thus lower
and raise probabilities, is an effect
well known to physicists. Given this,
it is interesting to ask whether other
techniques from physicists toolbox
might also be of use in algorithms.
A great example of this approach was
the recent discovery by Farhi et al.10 of
a quantum algorithm that outperforms
all possible classical algorithms for
the evaluation of NAND tree circuits.
This algorithm was derived, amazingly,
by considering the scattering of wave
packets off certain binary trees. As
a quintessential physics experiment
involves shooting one quantum system
at another and observing the resulting
scattered ‘outputs,’ physicists have
developed a host of tools for analyz-
ing such scattering experiments. It
was this approach that led the above
authors to the following important
new quantum algorithm.

To illustrate the NAND tree prob-
lem consider the following two player
game. The players are presented with a
complete binary tree of depth k. On the
leaves of the tree are labels that declare
whether player A or player B wins by
getting to this node. At the beginning
of a match, a marker is placed at the
root of the tree. Players take alternat-
ing turns moving this marker down a
level in the tree, choosing one of the
two possible paths, with the goal, of
course, of ending up at a leaf labeled
by the player’s name. A natural ques-
tion to ask is if it is always possible

for player A, with its first move, to win
the game. Evaluating whether this is
the case can be deduced inductively
in the following way. Suppose player
A makes the last move. Then player A
will be able to win if the marker is on
a node with at least one of its children
labeled “A wins” hence we should label
such internal nodes with “A wins” as
well. This line of reasoning holds in
general for all internal nodes on which
A makes a move: as soon as one of its
children has the label “A wins,” then
the node inherits the same conclu-
sion. On the other hand, if none of the
children has this label, then we can
conclude that “B wins.” Player B will,
of course, be reasoning in a similar
manner. Thus we can see that player A
will win, starting from a node of height
two, only if both of the children of the
node lead to positions where A wins.
We can then proceed inductively using
this logic to evaluate whether player
A can always win the game with a move
originating from the root of the tree.
If we label the leaves where player A
wins by 1 and where player B wins by 0,
then we can compute the value of the
root node (indicating whether player
A can always win) by representing
the interior layers of the tree by alter-
nating layers of AND and OR gates.
Further it is easy to see that one can
transform this from alternating layers
of AND and OR gates to uniform layers
of NAND (negated AND) gates, with a
possible flipping of the binary values
assigned to the leaves.

We have just shown that the problem
of evaluating whether the first player
has a series of moves that guarantees
victory is equivalent to evaluating the
value of a NAND tree circuit given a
labeling the leaves of the tree. Further,
if the player can evaluate any interior
value of the NAND tree, then one can
then use this to actually win the game.
If such a procedure is available one
can simply use the algorithm to evalu-
ate the two trees and if one of them is
always a win, take that move. Thus the
problem of evaluating the value of the
NAND tree is of central importance for
winning this game. The NAND tree is
an example of the more general con-
cept of a game tree which is useful for
study of many games such as Chess and
Go. In these later games, more than two
moves are available, but a similar logic

for evaluating whether there is a win-
ning strategy applies. This problem,
of which the NAND tree circuit is the
smallest example, is a central object in
the study of combinatorial games.

One can now ask: how costly is it
to evaluate the NAND tree: how many
nodes does one need to query in order
to compute the value of the NAND tree?
One could evaluate every leaf and com-
pute the root, but certainly this is waste-
ful: if you ever encounter a subtree
which evaluates to 0, you know that the
parent of this subtree must evaluate to
1. A probabilistic recursive algorithm
is then easy to think up: evaluate a sub-
tree by first evaluating randomly either
its left or right subtree. If this (left or
right) subtree is 0, then the original
subtree must have value 1. If not, evalu-
ate the other subtree. This method,
known as alpha–beta pruning, has a
long history in artificial intelligence
research. For the NAND tree, one can
show that by evaluating about W(N0.753)
of the N leaves one can calculate the
value of the NAND tree with high prob-
ability. It is also known that this value
for the number of leaves needed to be
queried is optimal.

For a long period of time it was
uncertain whether quantum comput-
ers could perform better than this.
Using standard lower bounding meth-
ods, the best lower bound which could
be proved was a O(N1/2), yet no quan-
tum algorithm was able to achieve
such a speedup over the best classi-
cal algorithm. Enter onto the scene
the physicists Farhi, Goldstone, and
Gutmann. These authors considered a
continuous quantum random walk of a
strange form. They considered a quan-
tum random walk on the graph formed
by a binary tree (of size related to the
NAND tree being evaluated) attached
to a long runway (see Figure 4). They
then showed how, if one constructed
an initial quantum system whose ini-
tial state was that of a quantum system
moving to the right towards the binary
tree, one could then obtain the value
of the NAND tree by seeing whether
such a quantum system scattered back
off the binary tree, or passed through
along the other side of the runway. The
time required to see this scattering or
lack of scattering was shown to be pro-
portional to O(N1/2). In other words, the
NAND tree could be evaluated by using

90 communicAtions of the Acm | FeBrUAry 2010 | vOl. 53 | nO. 2

review articles

O(N1/2) time by scattering a wave packet
off of a binary tree representing the
NAND tree problem. A few simple mod-
ifications can bring this in line with the
standard computer scientists defini-
tion of a query algorithm for the NAND
tree problem. Presto, out of a scattering
experiment, one can derive a quantum
algorithm for the NAND tree problem
which gives a O(N1/2) algorithm outper-
forming a classical computer science
algorithm. Building upon this work, a
variety of different trees with different
branching ratios and degrees of being
balanced have been explored show-
ing quantum speedups. Indeed one
remarkable aspect of much of this work
is that while in many cases the classical
versions of these problems do not have
matching upper and lower bounds, in
the quantum case matching upper and
lower bounds can now be achieved.

finding hidden symmetries
If interference is a quantum effect that
leads to polynomial speedups, what
about the quantum algorithms that
appear to offer exponential speedups,
like in Shor’s algorithm for factoring or
the quantum random walk algorithm
of Childs et al. described here? Here it
seems that just using interference by
itself is not sufficient for gaining such
extraordinary power. Instead, in the vast
majority of cases where we have expo-
nential speedups for quantum algo-
rithms, a different candidate emerges
for giving quantum computers power:
the ability to efficiently find hidden

symmetries. Here we review recent
progress in algorithms concerning
hidden symmetries. In many respects
these algorithms date back to the earli-
est quantum algorithms, a connection
we first briefly review, before turning
to more modern ways in which this
has influenced finding new quantum
algorithms.

We say an object has symmetry if
“we can do something to it without
changing it.” The things we can do are
described by the elements of a group
and the object itself is a function that

is defined on the same group. That
this does not have to be as abstract as
it seems is illustrated in Figure 5 for
the group of three-dimensional rota-
tions and the icosahedral symmetry of
a soccer ball.

Given a group G the symmetry of a
function f defined on G can range from
the trivial (when only the identity of G
leaves f unchanged) to the maximum
possible symmetry where f remains
unchanged under all possible group
operations. The most interesting cases
happen when f is invariant under only
a proper subgroup H of G and the task
of finding this H, given f, is known as
the hidden subgroup problem. For many
different types of groups we know how
to solve this problem efficiently on a
quantum computer, while no classical
algorithm can perform the same feat.
We claim that this is because quantum
computers can more efficiently exploit
problems with hidden symmetries.

To illustrate how quantum com-
puters are better suited to deal with
symmetries, let’s talk about the sim-
plest symmetry one can talk about: the
symmetry of flipping a bit. Consider
the operation X of negating a bit and
the identity operation I. If we perform
X twice, we obtain the operation I of
doing nothing at all, which shows that
I and X together form a group. Next,
consider representing how I and X

figure 4. the nAnD tree algorithm of farhi, Goldstone, and Gutmann.10

First, a tree is constructed where the presence or absence of leaves at the top of the tree corresponds
to the binary input values to the nAnd tree problem. next, a wavepacket is then constructed which,
if the tree were not attached, would propagate to the right. When the tree is attached, as shown, the
value of the nAnd tree can be determined by running the appropriate quantum walk and observing
whether the wave packet passes to the right of the attached tree or is reflected backwards.

Wavepacket

Answer

figure 5. the symmetries of a soccer ball.

Of all the possible three-dimensional rotations that one can apply, only a finite number
of them leave the image of a standard soccer ball unchanged. This subgroup, the icosahedral
rotation group with its 60 elements, therefore describes the symmetries of the object;
http://en.wikipedia.org/wiki/File: Trunc-icosa.jpg/

review articles

FeBrUAry 2010 | vOl. 53 | nO. 2 | communicAtions of the Acm 91

operate on a classical probabilistic bit.
Such a binary system is described by
a two-dimensional vector of prob-
abilities, corresponding to the prob-
ability p0 of being in 0 and p1 of being
in 1. The operations I and X can then
be represented on this system as the
two-by-two matrices

In group theoretic parlance, we say that
these two matrices form a represen-
tation of the group, which effectively
means that the multiplication among
these matrices mimics the operation
among the elements of the group that
is being represented.

But now notice how the matrices
for I and X act on the vector space R2.
Naturally, the identity matrix I leaves
all vectors unchanged, but the X
ma trix acts in a more interesting way.
If X acts on the symmetric vector [1, 1],
then, like I, it preserves this vector. If,
on the other hand, X operates upon
the vector [1, −1], then it multiplies
this vector by −1. This new vector
[−1, 1] still sits in the one-dimensional
subspace spanned by the original
[1, −1], but the direction of the vec-
tor has been reversed. In other words,
the act of flipping a bit can naturally
be represented down into its action
upon two one-dimensional sub-
spaces: on the first of these the group
always acts trivially, while on the other
it always acts by multiplying by the
scalar −1. Now we can see why clas-
sical probabilistic information is at
odds with this symmetry: while we
can create a symmetric probability
distribution [1–2

, 1–2] wherein the bit flip
X preserves this distribution, we can-
not create the other probability dis-
tribution that transforms according
to the multiplication by −1: doing so
would require that we have negative
probabilities. But wait, this is exactly
what the amplitudes of quantum
computers allow you to do: to prepare
and analyze quantum information in
all the relevant subspaces associated
with group operations such as flip-
ping a bit. Unlike classical comput-
ers, quantum computers can analyze
symmetries by realizing the unitary
transforms which directly show the

effects of these symmetries. This, in a
nutshell, is why quantum algorithms
are better adapted to solve problems
that involve symmetries.

The idea that symmetry is the excel-
sior of exponential quantum speed-
ups now has considerable evidence in
its favor and is one of the major moti-
vators for current research in quan-
tum algorithms. Shor’s algorithm
for factoring works by converting the
problem of finding divisors to that of
finding periods of a function defined
over the integers, which in turn is
the problem of determining the trans-
lational symmetries of this function.
In particular Shor’s algorithm works
by finding the period of the function
f (x) = r x mod N where r is a random
number coprime with N, the number
one wishes to factor. If one finds the
period of this function, i.e. the smallest
nonzero p such that f (x) = f (x + p),
then one has identified a p such
that xp = 1 mod N. If p is even (which
 happens with constant probability
for random x), then we can express
this equation as (x

p/2 + 1) (x
p/2 − 1) = 0

mod N. This implies that the greatest
common divisor of x

p/2 + 1 and N or
the greatest common divisor of x

p/2 − 1
and N is a divisor of N. One can then
use the Euclidean algorithm to find a
factor of N (should it exist). Thus one
can efficiently factor assuming one
can find the period p of f (x). This fact
was known before Shor’s discovery;
the task of determining the period p is
what requires a quantum computer.

How then, can a quantum algo-
rithm find the period p of a function
f ? The answer is: by exploiting the
just described friendly relationship
between quantum mechanics and
group theory. One starts with a system
of two quantum registers, call them
left and right. These are prepared into
a state where with equal amplitude
the left register contains a value x and
the right register carries the corre-
sponding function value f (x). The hid-
den symmetry of this state is captured
by the fact that it remains unchanged
if we would and p (or a multiple of p)
to the left register; adding a non-
multiple of p will, on the other hand,
change the state. To extract this hid-
den symmetry, let us view the ampli-
tudes of the state as the values of
a function from n bit strings to the

complex numbers. We would like to
use a quantum version of the Fourier
transform to extract the symmetry
 hidden in this function. Why the
Fourier transform? The answer to
this is that the Fourier transform is
intimately related to the symmetry of
addition modulo N. In particular if we
examine the process of addition where
we have performed a Fourier transform
before the addition and an inverse
Fourier transform after the addition,
we will find that it is now transformed
from an addition into multiplication
by a phase (a complex number z such
that |z| = 1). Addition can be repre-
sented on a quantum computer as
a permutation matrix: a matrix with
only a single one per column and row
of the matrix. If we examine how such
a matrix looks in the basis change
given by the Fourier transform, then
we see that this matrix only has entries
on the diagonal of the matrix. Thus
the Fourier transform is exactly the
unitary transform which one can use
to “diagonalize the addition matrix”
with respect to the symmetry of addi-
tion, which in turn is exactly the form
of the symmetry needed for period
finding.

The output of the quantum Fourier
transformation will reveal to us which
symmetries the state has, and by re -
peat ing this Fourier sampling a few
times we will be able to learn the exact
subgroup that the state hides, thus giv-
ing us the period p (and hence allowing
us to factor). Crucially the quantum
Fourier transform can be implemented
on a number of qubits logarithmic in
the size of the addition group, log N,
and in a time polynomial in log N as
well. If one were to attempt to mimic
Shor’s algorithm on a classical com-
puter, one would need to perform a
Fourier transform on N classical pieces
of data, which would require N log N
time (using the fast Fourier transform).
In contrast, because Shor’s quantum
algorithm acts on quantum ampli-
tudes, instead of on classical con-
figuration data, it leads to an efficient
quantum algorithm for factoring.

This symmetry analysis results
from the basics of the theory of group
 representation theory: symmetries are
described by groups, and the elements
of these groups can be represented by
unitary matrices. This is something

92 communicAtions of the Acm | FeBrUAry 2010 | vOl. 53 | nO. 2

review articles

that classical probabilistic computers
cannot exploit: the only way to repre-
sent a group on a classical computer
is to represent it as by deterministic
permutation. But while a group can
be represented by unitary matrices, no
such representation is possible using
stochastic matrices. This, at its heart,
appears to be one of the key reasons
that quantum computers offer expo-
nential benefits for some problems
over classical computers.

Given that Shor’s algorithm ex ploits
symmetry in such a successful way, it
is natural to search for other problems
that involve hidden symmetries. Follow-
ing Shor’s discovery it was quickly
 realized that almost all prior quantum
algorithms could be cast in a unifying
form as solving the hidden subgroup
problem for one group or the other.
For Shor’s algorithm the relevant group
is the group of addition modulo N.
For the discrete logarithm problem the
relevant group is the direct product
of the groups of addition modulo N.
Indeed it was soon discovered that
for all finite Abelian groups (Abelian
groups are those whose elements all
commute with each other) quantum
computers could efficiently solve the
hidden subgroup problem. A natural
follow-up question is: what about the
non-Abelian hidden subgroup prob-
lem? And, even more importantly,
would such an algorithm be useful for
any natural problems, as the Abelian
hidden subgroup problem is useful for
factoring?

One of the remarkable facts about
the problem of factoring is its inter-
mediate computational complexity.
Indeed, if one examines the decision
version of the factoring problem, one
finds that this is a problem which is in
the complexity class NP and in the com-
plexity class Co-NP. Because of this fact
it is thought to be highly unlikely that it
is NP-complete, since if it were, then the
polynomial hierarchy would collapse in
a way thought unlikely by complexity
theorists. On the other hand, there is
no known classical algorithm for fac-
toring. Thus factoring appears to be of
Goldilock’s complexity: not so hard as
to revolutionize our notion of tractabil-
ity by being NP-complete, but not so
easy as to admit efficient classical solu-
tion. There are, surprisingly, only a few
problems which appear to fit into this

category. Among them, however, are the
problems of graph isomorphism and
certain shortest-vector in a lattice prob-
lems. Might quantum computers help
at solving these problems efficiently?

Soon after Shor’s algorithm was
phrased as a hidden subgroup prob-
lem, it was realized that if you could
efficiently solve the hidden subgroup
problem over the symmetric group
(the group of permutations of n objects),
then you would have an efficient quan-
tum algorithm that solves the graph
isomorphism problem. Further, Regev22
showed how the hidden subgroup prob-
lem over the dihedral group (the group
of symmetries of a regular polygon
where one can not only rotate but also
flip the object) relates to finding short
vectors in a high dimensional lattice.
Hence a hypothetical efficient quantum
algorithm for this dihedral case could
be used to solve such shortest vector
problems. This in turn would break the
public key cryptosystems that are based
upon the hardness of these lattice prob-
lems, which are among the very few
cryptosystems not broken by Shor’s
algorithm. As a result of these observa-
tions about the non-Abelian hidden
subgroup problem, designing quantum
algorithms for such groups has become
an important part of the research in
quantum computation. While a certain
amount of progress has been achieved

(by now we know of many non-Abelian
groups over which the hidden subgroup
problem can be solved efficiently), this
problem remains one of the outstand-
ing problems in the theory of quantum
algorithms.

At the same time, going back to
the Abelian groups, there has been
quite some success in finding new
 applications of the quantum algorithm
for the Abelian hidden subgroup prob-
lem, besides factoring and discrete log-
arithms. Hallgren14 showed that there
exists a quantum algorithm for solving
Pell’s equation (that is, finding integer
solutions x, y to the cubic equation x2 −
dy2 = 1, see Table 1), while Kedlaya15 has
described a quantum procedure that
efficiently counts the number points
of curves defined over finite fields.
Furthermore, other efficient quantum
algorithm has been found for, among
other problems, determining the struc-
ture of black box groups, estimating
Gauss sums, finding hidden shifts, and
estimating known invariants.

simulating Quantum Physics
A final area in which quantum algo-
rithms have made progress goes back
to the very roots of quantum computing
and indeed of classical computing itself.
From their earliest days, computers
have been put to use in simulating phys-
ics. Among the difficulties that were

table 1. some examples of integer solutions (x, y) to Pell’s equation x2 − dy2 = 1
for different values d.

Such solutions tell us what the units are of the number field Q[÷ ÷̀d] (the rational numbers extended
with the irrational ÷ ÷̀̀d) and thereby solve the unit group problem. hallgren’s result shows how this
problem can be solved efficiently on a quantum computer, while no such algorithm is known for
classical computers.

d x y

2 3 2

3 2 1

5 9 4
.
:

13 649 180

14 15 4
.
:

6,009 1,316,340,106,327,253,158 1,698,114,661,157,803,451

9,259,446,951,059,947,388 6,889,492,378,831,465,766

4,013,975 » 1.3 × 1044 81,644 » 1.6 × 1042

6,013 40,929,908,599 527,831,340
.
:

review articles

FeBrUAry 2010 | vOl. 53 | nO. 2 | communicAtions of the Acm 93

soon encountered in such simulations
was that quantum systems appeared to
be harder to simulate than their classi-
cal counterparts. But, of course, some-
how nature, which obeys quantum
theory, is already carrying out “the sim-
ulation” involved in quantum physics.
So, if nature is carrying out the simula-
tion, then should we be able to design
a computer that also can perform this
simulation? This was in fact the seed of
the idea that led to the original notion of
quantum computing by Feynman.11

To put this in perspective, consider
the problem of simulating classical
physics. The miracle of reproducing
classical physics on a classical com-
puter is that you can use many ‘par-
ticles’ with small state spaces (bits) to
mimic a few particles that have very
large state spaces. For this to be pos-
sible it is required that the number of
bit configurations, 2(number of bits), is at
least as big as the number of possible
states of the physical system (which
is the size of the particle’s state space
exponentiated with the number of
particles). As a result, we can simulate
the solar system on a laptop.

Quantum computing does the same
thing for quantum mechanical systems;
now 2(number of qubits) is the dimension of
the state space and it allows us to simu-
late other quantum physical systems
that consists of few particles with expo-
nentially large state spaces. Here how-
ever, it appears essential that we rely
on quantum computing components
in order to simulate the truly quantum
mechanical components of a physical
system. A crucial question therefore is:
which physical systems are interesting
to simulate in such a manner?

While the complete answer to this
question is not known, a deeper look
at quantum algorithms for simulating
quantum physics is now being under-
taken in several places. As an example, a
group of physical chemists have recently
compared how useful quantum comput-
ers would be for computing the energy
level structure of molecular systems.5
This is a classical problem of physical
chemistry, and our inability to perform
these calculations robustly for large
molecules is a bottleneck in a variety
of chemical and biological applica-
tions. Could quantum computers help
for solving this problem and outper-
forming the best classical algorithms?

One of the exciting findings in studying
this problem was that a small quantum
computer, consisting of only a few hun-
dred qubits, could already outperform
the best classical algorithms for this
problem. This small number makes it
likely that among the first applications
of a quantum computer will not be fac-
toring numbers, but instead will be in
 simulating quantum physics. Indeed,
we believe that a quantum computer will
be able to efficiently simulate my possi-
ble physical system and that it therefore
has the potential to have a huge impact
on everything from drug discovery to the
rapid development of new materials.

conclusion
The discovery that quantum comput-
ers could efficiently factor is, even
today, difficult to really appreciate.
There are many ways to get out of the
conundrum posed by this discovery,
but all of these will require a funda-
mental rewriting of our understanding
of either physics or computer science.
One possibility is that quantum com-
puters cannot be built because quan-
tum theory does not really hold as a
universal theory. Although disappoint-
ing for quantum computer scientists,
such a conclusion would be a major
discovery about one of the best tested
physical theories—quantum theory.
Perhaps there is a classical algorithm
for efficiently factoring integers. This
would be a major computer science
discovery and would blow apart our
modern public key cryptography. Or
perhaps, just perhaps, quantum com-
puters really are the true model of
computing in our universe, and the
rules of what is efficiently computable
have changed. These are the dreams
of quantum computer scientists look-
ing for quantum algorithms on the
quantum machines they have yet to be
quantum programmed.

References
 1. aharonov, D., ben-or, M. Fault-tolerant quantum

computation with constant error rate. in
Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing (1997). acM,
176–188.

 2. aharonov, y., Davidovich, L., zagury, N. Quantum
random walks. Phys. Rev. A 48, 167 (1993).

 3. ambainis, a. Quantum walk algorithm for
element distinctness. SIAM J. Comput. 37
(2007), 210.

 4. ambainis, a., kempe, J., rivosh, a. coins make
quantum walks faster. in Proceedings of the
16th Annual ACM SIAM Symposium on Discrete
Algorithms (2005), 1099.

 5. aspuru-guzik, a., Dutoi, a., Love, P.J., head-gordon,
M. Simulated quantum computation of molecular
energies. Science 309, 5741 (2005).

 6. bell, J.S. on the Einstein Podolsky rosen paradox.
Physics 1, (1964), 195.

 7. buhrman, h. Špalek, r. Quantum verification of matrix
products. in Proceedings of the 17th Annual ACM-
SIAM Symposium on Discrete Algorithms (2006), 880.

 8. childs, a.M., cleve, r., Deotto, E., Farhi, E., gutmann,
S., Spielman, D.a. Exponential algorithmic speedup
by quantum walk. in Proceedings of the 35th ACM
Symposium on Theory of Computing (2003), 59–68.

 9. Farhi, E., gutmann, S. Quantum computation and
decision trees. Phys. Rev. A 58 (1998), 915.

10. Farhi, E., goldstone, J., gutmann, S. a quantum
algorithm for the hamiltonian NaND tree. Eprint
arXiv:quant-ph/0702144, 2007.

11. Feynman, r. Simulating physics with computers. Intl.
J. Theor. Phys. 21 (1982), 467–488.

12. grover, L. a fast quantum mechanical algorithm for
database search. in Proceedings of the 28th Annual
ACM Symposium on the Theory of Computation
(New york, 1996). acM, 212–219.

13. häffner, h., hänsel, W., roos, c.F., benhelm, J., al kar,
D.c., chwalla, M., körber, t., rapol, U.D., riebe, M.,
Schmidt, P.o., becher, c., gühne, o., Dür, W., blatt,
r. Scalable multiparticle entanglement of trapped
ions. Nature 438 (2005), 643.

14. hallgren, S. Polynomial-time quantum algorithms
for pell’s equation and the principal ideal problem.
in Proceedings of the 34th Annual ACM Symposium
on the Theory of Computation (New york, 2002).
acM, 653–658.

15. kedlaya, k.S. Quantum computation of zeta functions
of curves. Comput. Complex. 15, 1–19 (2006).

16. kitaev, a. Quantum error correction with imperfect
gates. in Quantum Communication, Computing and
Measurement (New york, 1997). Plenum, 181–188.

17. knill, E., Laflamme, r., zurek, W.h. resilent quantum
computation. Science 279 (1998), 342–345.

18. knill, E., Laflamme, r., zurek, W.h. resilient quantum
computation: error models and thresholds. Proc. Roy.
Soc. Lond. Ser. A 454 (1998), 365–384.

19. Leibfried, D., knill, E., Seidelin, S., britton, J.,
blakestad, r.b., chiaverini, J., hume, D.b., itano,
W.M., Jost, J.D., Langer, c., ozeri, r., reichle,
r., Wineland, D.J. creation of a six-atom
‘Schrödinger cat’ state. Nature 438 (2005), 639.

20. Magniez, F., Santha, M., Szegedy, M. Quantum
algorithms for the triangle problem. in Proceedings
of the 16th Annual ACM SIAM Symposium on
Discrete Algorithms (2005), 1109.

21. Nielsen, M.a. chuang, i.L. Quantum Computation
and Quantum Information. cambridge University
Press, New york, 2000.

22. regev, o. Quantum computation and lattice
problems. in 43rd Symposium on Foundations of
Computer Science (iEEE computer Society, 2002),
520–529.

23. rivest, r.L., Shamir, a., adleman, L. a method
of obtaining digital signatures and public-key
cryptosystems. Commun. ACM 21 (1978), 120–126.

24. Shor, P.W. algorithms for quantum computation:
Discrete log and factoring. in Proceedings of the
35th Annual Symposium on the Foundations of
Computer Science. S. goldwasser, ed. (Los alamitos,
ca, 1994). iEEE computer Society, 124–134.

25. Shor, P.W. Fault tolerant quantum computation.
in Proceedings of the 37th Symposium on the
Foundations of Computer Science (Los alamitos, ca,
1996), iEEE, 56–65.

26. Woehr, J. online interview “a conversation with
christos Papadimitriou”. Dr. Dobb’s J. July Dave
bacon is an assistant research professor in the
Department of computer Science and Engineering,
Department of Physics, at the University of
Washington, Seattle.

Dave Bacon (dabacon@cs.washington.edu) is an assistant
research professor in the Department of computer Science
& Engineering, Department of Physics, University of
Washington, Seattle, Wa.

Wim van Dam (vandam@cs.ucsb.edu) is an associate
professor in the Department of computer Science,
Department of Physics, University of california, Santa
barbara, Santa barbara, ca.

© 2010 acM 0001-0782/10/0200 $10.00

