
quantum parts together, one gets a 
notion of the algorithm—the quan-
tum algorithm—whose computation-
al power appears to be fundamentally 
more efficient at carrying out certain 
tasks than algorithms written for 
today’s, nonquantum, computers. 
Could this possibly be true: that there 
is a more fundamental notion of algo-
rithmic efficiency for computers built 
from quantum components? And, if 
this is true, what exactly is the power 
of these quantum algorithms?

The shot that rang round the compu-
tational world announcing the arrival 
of the quantum algorithm was the 1994 
discovery by Peter Shor that  quantum 
computers could efficiently factor nat-
ural numbers and compute discrete 
logarithms.24 The problem of finding 
efficient algorithms for  factoring has 
been burning the brains of mathema-
ticians at least as far back as Gauss 
who commented upon the problem  
that “the dignity of science seems to 
demand that every aid to the solution 
of such an elegant and celebrated 
problem be zealously cultivated.” Even 
more important than the fact that 
such a simple and central problem has 
eluded an efficient algorithmic solu-
tion is that the lack of such an efficient 
algorithm has been used as a justifica-
tion for the security of public key cryp-
tosystems, like RSA encryption.23 Shor’s 
algorithm, then, didn’t just solve a 
problem of pure academic interest, but 
instead ended up showing how quan-
tum computers could break the vast 
majority of cryptographic protocols in 
widespread use today. If we want the 
content of our publicly key encrypted 
messages to remain secret not only 
now, but also in the future, then Shor’s 
algorithm redefines the scope of our 
confidence in computer security: we 
communicate securely, today, given 
that we cannot build a large scale 
 quantum computer tomorrow.

Given the encryption  breaking pow-
ers promised by quantum comput-
ers, it was natural that, in the decade 
 following Shor’s discovery, research 
has focused largely on whether a 

it is impossible to imagine today’s technological 
world without algorithms: sorting, searching, 
calculating, and simulating are being used  
every where to make our everyday lives better. But 
what are the benefits of the more philosophical 
endeavor of studying the notion of an algorithm 
through the perspective of the physical laws of 
the universe? This simple idea, that we desire 
an understanding of the algorithm based upon 
physics seems, upon first reflection, to be nothing 
more than mere plumbing in the basement of 
computer science. That is, until one realizes 
that the pipes of the universe do not seem to 
behave like the standard components out of 
which we build a computer, but instead obey the 
counterintuitive laws of quantum theory. And,  
even more astoundingly, when one puts these
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quantum computer could be built. 
While there currently appear to be no 
fundamental obstacles to ward build-
ing a large scale quantum  computer 
(and even more importantly, a 
result known as the “threshold  
theorem”1, 16–18, 25 shows that quan-
tum  computers can be made resil-
ient against small amounts of noise, 
thereby con firming that these are 
not analog machines), the engineer-
ing challenges posed to build an RSA 
breaking quantum computer are 
severe and the largest quantum com-
puters built to date have less than 
10 quantum bits (qubits).13, 19 But 
regardless of the progress in build-
ing a quantum computer, if we are to 
seriously consider our understanding 
of computation as being based upon 
experimental evidence, we will have 
to investigate the power of quantum 
algorithms. Christos Papadimitriou 
said in a recent interview26 that the 
theory of  computational complexity is 
such a difficult field because it is nearly 
impossible to prove what everyone 
knows from experience. How, then, 
can we even begin to gain an under-
standing of the power of quantum 
computers if we don’t have one from 
which to gain such an experience? 
Further, and perhaps even more chal-
lenging, quantum algorithms seem to 
be exploiting the very effects that make 
quantum theory so uniquely counter-
intuitive.6 Designing algorithms for  
a quantum computer is like building 
a car without having a road or gas to 
take it for a test drive.

In spite of these difficulties, a 
group of intrepid multidisciplinary 
 researchers have been tackling the 
question of the power of quantum 
algorithms in the decades since Shor’s 
discoveries. Here we review recent 
progress on the upper bounding side 
of this problem: what new quantum 
algorithms have been discovered 
that outperform classical algorithms 
and what can we learn from these 
discoveries? Indeed, while Shor’s 
factoring algorithm is a tough act to 
follow, significant progress in quan-
tum algorithms has been achieved. 
We concentrate on reviewing the 
more recent progress on this prob-
lem, skipping the discussion of early 
(but still important) quantum algo-
rithms such as Grover’s algorithm12 

for searching (a quantum algorithm 
that can search an unstructured space 
quadratically faster than the best clas-
sical algorithm), but explaining some 
older algorithms in order to set con-
text. For a good reference for learn-
ing about such early, now “classic” 
algorithms (like Grover’s algorithm 
and Shor’s algorithm) we refer the 
reader to the textbook by Nielsen and 
Chuang.21 Our discussion is largely 
ahistoric and motivated by attempt-
ing to give the reader intuition as to 
what motivated these new quantum 
algorithms. Astonishingly, we will see 
that progress in quantum algorithms 
has brought into the algorithmic fold 
basic ideas that have long been foun-
dational in physics: interference, 
scattering, and group representation 
theory. Today’s quantum algorithm 
designers plunder ideas from physics, 
mathematics, and chemistry, weld 
them with the tried and true methods 
of classical computer science, in order 
to build a new generation of quantum 
contraptions which can outperform 
their classical counterparts.

Quantum theory in a nutshell
Quantum theory has acquired a reputa-
tion as an impenetrable theory acces-
sible only after acquiring a significant 
theoretical physics background. One  
of the lessons of quantum comput-
ing is that this is not necessarily true: 
quantum computing can be learned 
without mastering vast amounts of 
physics, but instead by learning a few 
simple differences between quantum 
and classical information. Before dis-
cussing quantum algorithms we first 
give a brief overview of why this is true 
and point out the distinguishing fea-
tures that separate quantum informa-
tion from classical information.

To describe a deterministic n-bit 
system it is sufficient to write down its 
configuration, which is simply a binary 
string of length n. If, however, we have  
n-bits that can change according to pro-
babilistic rules (we allow randomness  
into how we manipulate these bits), we 
will instead have to specify the prob-
ability distribution of the n-bits. This 
means to specify the system we require 
2n positive real numbers describing 
the probability of the system being in a 
given configuration. These 2n numbers 
must sum to unity since they are, after 

all, probabilities. When we observe  
a classical system, we will always find it 
to exist in one particular configuration 
(i.e. one particular binary string) with 
the probability given by the 2n num-
bers in our probability distribution.

Now let’s turn this approach to 
quantum systems, and consider a 
system made up of n qubits. Again, n 
qubits will have a configuration which 
is just a length n binary string. When 
you observe n qubits you will only see 
an n bit configuration (thus when you 
hear someone say that a qubit is both 
zero and one at the same time you 
can rely on your common sense tell 
them that this is absurd). But now, 
instead of describing our system by 2n 
probabilities, we describe a quantum 
 system by 2n amplitudes. Amplitudes, 
unlike probabilities (which were 
positive real numbers and which 
summed to unity), are complex num-
bers which, when you take their abso-
lute value-squared and add them up, 
sum to unity. Given the 2n amplitudes 
describing a quantum system, if you 
observe the system, you will see a par-
ticular configuration with a probabil-
ity given by the modulus squared of 
the amplitude for that configuration.  
In other words, quantum systems are 
described by a set of 2n complex num-
bers that are a bit like square roots of 
probabilities (see Figure 1).

So far we have just said that there is 
this different description for quantum 
systems, you describe them by ampli-
tudes and not by probabilities. But 
does this really have a consequence? 
After all the amplitudes aren’t used so 
far, except to calculate probabilities. 
In order to see that yes, indeed, it does 

figure 1. classical versus  
quantum information. 

On the left, the classical bit is described by two 
nonnegative real numbers for its probabilities 
Pr(0) = 1/3 and Pr(1) = 2/3. The quantum bit 
on the right, instead, has two complex valued 
amplitudes that give the (same) probabilities by 
taking the absolute value-squared of its entries. 
When a quantum system has such a description 
with nonzero amplitudes, one says that the 
system is in a superposition of the 0 and 1 
configurations.

Classical bit:
2
3

1
3

Quantum bit:

−1
3

1+i

Ö

3Ö



review articles

FeBrUAry 2010  |   vOl.  53  |   nO.  2  |   communicAtions of the Acm     87

have a profound consequence, we 
must next describe how to update our 
description of a system as it changes 
in time. One can think about this as 
analyzing an algorithm where informa-
tion in our computing device changes 
with time according to a set of specific 
recipe of changes.

For a classical probabilistic com-
puting device we can describe how 
it changes in time by describing the 
conditional probability that the sys-
tem changed into a new configuration 
 given that it was in an old configura-
tion. Such a set of conditional prob-
abilities means that we can describe 
a probabilistic computing action by 
a stochastic matrix (a matrix whose 
entries are positive and whose col-
umns sum to unity). A classical proba-
bilistic algorithm can then be viewed 
as just a set of stochastic matrices 
describing how probabilities propa-
gate through the computing device. 
If the classical probabilistic algo-
rithm starts with n bits and ends with 
m bits, then the stochastic matrix 
describing the algorithm will be a 2m  
by 2n matrix.

What is the analogous procedure 
for a quantum system? Well instead of 
specifying conditional probabilities of 
a new configuration given an old con-
figuration, in a quantum system you 
need to specify the conditional ampli-
tude of a new configuration given an 
old configuration. In the quantum 
world, the matrix of conditional ampli-
tudes has two major differences from 
the classical probabilistic setting. The 
first is that quantum systems evolve 
reversibly and thus the matrix is 2n by 
2n (corresponding to the amplitude 
of every configuration to change into 
any other configuration). The second 
is that, in order to preserve the sum 
of the squares of those amplitudes, 
which should be 1 throughout, this 
matrix is a unitary matrix, meaning 
the entries of the matrix are complex 
numbers, and that the rows (and col-
umns) of this matrix are orthonormal. 
Thus a quantum algorithm for a quan-
tum system is given by a unitary matrix 
of conditional amplitudes.

What consequence does this change 
from probabilities to amplitudes 
and from stochastic matrices to uni-
tary matrices have for the notion of 
an algorithm? This is, of course, the 

essential question at hand when con-
sidering quantum algorithms. In 
this survey we single out three major 
differences—quantum interference, 
the deep relationship between sym-
metries and quantum mechanics, and 
quantum entanglement—and show 
how they are related to recent prog-
ress in quantum algorithms.

interference and the Quantum 
Drunkard’s Walk
The first of our claimed differences 
between quantum computers and clas-
sical computers was that the former 
led to effects of quantum interference. 
What is interference and how can it 
lead to new efficient algorithms?

To illustrate the ideas of interfer-
ence, consider a random walk on a 
line. The standard, classical drunk-
ard’s walk on a line refers to situation 
where the walker is allowed to step 
either forward or backward with equal 
probability every unit time step. When 
starting at position 0 at time zero, 
then after one time step there is an 
equal probability to be at locations +1 
and −1. After the next time step, there 
is a one-fourth probability of being at 
positions −2 and 2 and one half prob-
ability of being at position 0. Notice 
here that the probability of reaching 
zero was the sum of two probabili-
ties: the probability that the drunkard 
got to 0 via 1 and the probability that 
it got to 0 via −1. Random walks on 
structures more complicated than a 
line are a well-known tool in classical 
algorithms.

Suppose that we want to construct 
a quantum version of this drunkard’s 
walk. To specify a quantum walk, we 
need, instead of a probability for tak-
ing a step forward or backward, an 
amplitude for doing this. However we 
also need to make sure that the unitary 
nature of quantum theory is respected. 
For example, you might think that the 
quantum analogy of a classical walk is to 
take a step forward and a step backward 
with amplitude one over the square root 
of two (since squaring this gives a prob-
ability of one half). If we start at 0, then 
after one step this prescription works: 
we have equal amplitude of one over 
square root of two of being at either  
1 or −1. If we measure the walker after 
this first step, the probability of being 
at 1 or −1 is both one half. But if we run 

this for another time step, we see that 
we have an amplitude of ½ to be at 
−2 or 2 and an amplitude 1 to be at 0. 
Unfortunately if we square these num-
bers and add them up, we get a num-
ber greater than unity, indicating that 
the evolution we have described is not 
unitary.

The solution to this problem is to 
let the drunkard flip a quantum coin at 
each time step, after which he steps in 
the direction indicated by the quantum 
coin. What is a quantum coin? A quan-
tum coin is simply a qubit whose two 
configurations we can call  “forward” 
and “backward” indicating the direc-
tion we are supposed to move after flip-
ping the quantum coin. How do we flip 
such a coin? We apply a unitary trans-
form. This unitary transform must 
specify four amplitudes. One choice of 
such a unitary transform that seems to 
mimic the drunkard’s walk is to assign 
all conditional amplitudes a value of 
one over the square root of two, with the 
exception of the amplitude to change 
from the configuration “forward” to 
the configuration “backward,” which, 
due to unitarity, we assign the ampli-
tude negative one over square root of 
two. In other words the unitary trans-
form we apply to flip the coin is speci-
fied by the transition matrix

  

(1)

If we follow this prescription for a 
quantum random walk with the drunk-
ard initially positioned at zero, one 
quickly sees that something strange 
happens. Consider, for instance, the 
probability distribution formed by 
the quantum walk had we measured  
the walker’s  position after three time 
steps (see Figure 2). Then the probabil-
ity of getting to +1 for the drunkard is 1⁄8.  
For a  classical walk the similar num-
ber would be 3⁄8. What is going on 
here? Well if you trace back how he 
could have gotten to +1 in three steps, 
you’ll see that there are three paths it 
could have used to get to this position.  
In the classical world each of these is 
 traversed with equal probability, add-
ing a contribution of 1⁄8 for each step. 
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But in the quantum world, two of these 
paths contribute equal but oppositely 
to the amplitude to get to this position. 
In other words these two paths inter-
fere with each other. Because ampli-
tudes, unlike probabilities, don’t have 
to be positive numbers, they can add 
up in ways that cancel out. This is the 
effect known as quantum interfer-
ence. It is the same  interference idea 
which you see when two water waves 
collide with each other. But note an 
important difference here: ampli-
tudes squared are probabilities. In 
water waves, the heights interfere, not 
anything related to the probabilities 
of the waves. This is the peculiar effect 
of quantum interference.

Quantum random walks were actu-
ally first described by physicists in 
1993,2 but only with the rise of interest 
in quantum computers was it asked 
whether these walks could be used as 
a computational tool. An alternative, 
continuous time version of these algo-
rithms (tacking more closely to ideas 
in physics) has also been developed 
by Farhi and Gutmann.9 Given these 
quantum random walks, a natural 
question is what does this have to do 
with algorithms? Well, the first obser-
vation is that quantum random walks 
behave in strange ways. For instance a 
well-known property of classical ran-
dom walks on a line is that the expected 
standard deviation of a random walk 
as a function of the number of steps 
taken, T, scales like the square root  
of T. However, for a quantum random 
walk the standard deviation can actu-
ally spread linearly with T. Remarkably, 
this difference has been well known 
to physicists for a long time: it turns 
out that the quantum random walk 

defined above is closely related to the 
Dirac equation for a one-dimensional 
electron (the Dirac equation is a way 
to get quantum mechanics to play 
nicely with the special theory of rela-
tivity, and is a basic equation used in 
modern quantum field theory). This 
discovery that quantum algorithms 
seem to explore space quadratically 
faster than classical random walks has 
recently been shown to lead to quan-
tum algorithms that polynomially out-
perform their classical cousins.

One example of an algorithm based 
upon quantum random walks is the 
algorithm for element distinctness 
due to Ambainis.3 The element dis-
tinctness problem is, given a function 
f from {1, 2, …, N} to {1, 2, …, N} deter-
mine whether there exists two indices 
i ¹ j such that f (i) = f (  j). Classically 

this requires W(N) queries to the 
function f. Ambainis showed how a 
quantum random walk algorithm for 
this problem could be made to work 
using O(N2/3) queries: an improvement 
which has not been achieved using 
any other quantum methods to date. 
Other algorithms that admit speed-
ups of a similar nature by using quan-
tum random walks are spatial search 
(searching a spatially d-dimensional 
space),4 triangle finding,20 and verify-
ing matrix products.7 Quantum ran-
dom walks algorithms, then, are a 
powerful tool for deriving new quan-
tum algorithms.

These examples all achieved poly-
nomial speedups over the best pos-
sible classical algorithms. Given that 
quantum random walks can be used 
to polynomially outperform classical 
computers at some tasks, a natural 
question is whether quantum com-
puters can be used to exponentially 
outperform classical computers. The 
answer to this question was first given 
by Childs et al.,8 who showed that a 
quantum random walk could traverse 
a graph exponentially faster than any 
possible classical algorithm walking 
on this graph. In Figure 3 we show the 
graph in question: the crux of the idea 
is that a quantum algorithm, by con-
structively or destructively interfering, 
can traverse this graph, while a clas-
sical algorithm will always get stuck 
in the middle of the graph. Construc-

figure 2. classical (top) and quantum (bottom) random walks. 

The probability of reaching a particular point in space and time, given 
that we measure the position at that time, is listed on the vertices.

–5 –4 –3 –2 –1 0 1
0

1

2

3

4

5

1

1/2 1/2

1/4 1/2 1/4

1/8

1/16 5/8 1/8 1/8 1/16

1/32 17/32 1/8 1/8 5/32 1/32

Time

Space

5/8 1/8 1/8

2 3 4 5–5 –4 –3 –2 –1 0 1
0

1

2

3

4

5

1

1/2 1/2

1/4 1/2 1/4

1/8

1/16 1/4 3/8 1/4 1/16
1/32 5/32 5/16 5/16 5/32 1/32

Time

Space

3/8 3/8 1/8

2 3 4 5

figure 3. An example of a graph arising in the quantum random walk problem  
considered by childs et al.8

In this problem one is given access to a 
function that takes as input a vertex and 
returns a list of the vertex’s neighbors. The 
goal of the problem considered by Childs et 
al. is, by querying the function as few times 
as possible, traverse from the start vertex 
to the end vertex. The graphs considered 
are two full binary trees pasted together 
with a random cycle (in the example, the 
cycle resides inside the dashed box) whose 
roots are the start and end vertices. The 
quantum algorithm starts at the start 
vertex and then performs a quantum 
diffusion to the end vertex. The random 
cycle in the middle does not destroy this 
diffusion, since all paths contribute equally 
to this diffusion. For a graph of depth d, 
the quantum walk will find the end vertex 
by querying the local vertex function a 
polynomial number of times in d. The best 
classical algorithm can be shown to require 
querying the function for local vertex 
information exponentially many times in d.

Start End
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tive interference refers to the condi-
tion where quantum evolution causes 
amplitudes to increase in absolute 
magnitude (and hence in probability) 
while destructive interference refers to 
where the evolution causes amplitudes 
to decrease in absolute magnitude 
(and hence decrease in probability). 
In spite of this success, the above 
problem, traversing this graph, does 
not appear to have a good algorithmic 
use. Thus a subject of great research 
interest today is whether there are 
quantum random walk algorithms 
that offer exponential speedups over 
classical algorithms for interesting 
algorithmic problems.

Quantum Algorithms  
and Game Playing
Quantum interference, the ability of 
multiple computational paths to add 
or detract amplitudes and thus lower 
and raise probabilities, is an effect 
well known to physicists. Given this, 
it is interesting to ask whether other 
techniques from physicists toolbox 
might also be of use in algorithms.  
A great example of this approach was 
the recent discovery by Farhi et al.10 of  
a quantum algorithm that outperforms 
all possible classical algorithms for  
the evaluation of NAND tree circuits. 
This algorithm was derived, amazingly, 
by considering the scattering of wave 
packets off certain binary trees. As  
a quintessential physics experiment 
involves shooting one quantum system 
at another and observing the resulting 
scattered ‘outputs,’ physicists have 
developed a host of tools for analyz-
ing such scattering experiments. It 
was this approach that led the above 
authors to the following important 
new quantum algorithm.

To illustrate the NAND tree prob-
lem consider the following two player 
game. The players are presented with a 
complete binary tree of depth k. On the 
leaves of the tree are labels that declare 
whether player A or player B wins by 
getting to this node. At the beginning 
of a match, a marker is placed at the 
root of the tree. Players take alternat-
ing turns moving this marker down a 
level in the tree, choosing one of the 
two possible paths, with the goal, of 
course, of ending up at a leaf labeled 
by the player’s name. A natural ques-
tion to ask is if it is always possible 

for player A, with its first move, to win 
the game. Evaluating whether this is 
the case can be deduced inductively 
in the following way. Suppose player 
A makes the last move. Then player A 
will be able to win if the marker is on 
a node with at least one of its children 
labeled “A wins” hence we should label 
such internal nodes with “A wins” as 
well. This line of reasoning holds in 
general for all internal nodes on which 
A makes a move: as soon as one of its 
children has the label “A wins,” then 
the node inherits the same conclu-
sion. On the other hand, if none of the 
children has this label, then we can 
conclude that “B wins.” Player B will, 
of course, be reasoning in a similar 
manner. Thus we can see that player A 
will win, starting from a node of height 
two, only if both of the children of the 
node lead to positions where A wins. 
We can then proceed inductively using 
this logic to evaluate whether player  
A can always win the game with a move 
originating from the root of the tree.  
If we label the leaves where player A 
wins by 1 and where player B wins by 0, 
then we can compute the value of the 
root node (indicating whether player 
A can always win) by representing 
the interior layers of the tree by alter-
nating layers of AND and OR gates. 
Further it is easy to see that one can 
transform this from alternating layers 
of AND and OR gates to uniform layers 
of NAND (negated AND) gates, with a 
possible flipping of the binary values 
assigned to the leaves.

We have just shown that the problem 
of evaluating whether the first player 
has a series of moves that guarantees 
victory is equivalent to evaluating the 
value of a NAND tree circuit given a 
labeling the leaves of the tree. Further, 
if the player can evaluate any interior 
value of the NAND tree, then one can 
then use this to actually win the game. 
If such a procedure is available one 
can simply use the algorithm to evalu-
ate the two trees and if one of them is 
always a win, take that move. Thus the 
problem of evaluating the value of the 
NAND tree is of central importance for 
winning this game. The NAND tree is 
an example of the more general con-
cept of a game tree which is useful for 
study of many games such as Chess and 
Go. In these later games, more than two 
moves are available, but a similar logic 

for evaluating whether there is a win-
ning strategy applies. This problem, 
of which the NAND tree circuit is the 
smallest example, is a central object in 
the study of combinatorial games.

One can now ask: how costly is it 
to evaluate the NAND tree: how many 
nodes does one need to query in order 
to compute the value of the NAND tree? 
One could evaluate every leaf and com-
pute the root, but certainly this is waste-
ful: if you ever encounter a subtree 
which evaluates to 0, you know that the 
parent of this subtree must evaluate to 
1. A probabilistic recursive algorithm 
is then easy to think up: evaluate a sub-
tree by first evaluating randomly either 
its left or right subtree. If this (left or 
right) subtree is 0, then the original 
subtree must have value 1. If not, evalu-
ate the other subtree. This method, 
known as alpha–beta pruning, has a 
long history in artificial intelligence 
research. For the NAND tree, one can 
show that by evaluating about W(N0.753) 
of the N leaves one can calculate the 
value of the NAND tree with high prob-
ability. It is also known that this value 
for the number of leaves needed to be 
queried is optimal.

For a long period of time it was 
uncertain whether quantum comput-
ers could perform better than this. 
Using standard lower bounding meth-
ods, the best lower bound which could 
be proved was a O(N1/2), yet no quan-
tum algorithm was able to achieve 
such a speedup over the best classi-
cal algorithm. Enter onto the scene  
the physicists Farhi, Goldstone, and 
Gutmann. These authors considered a 
continuous quantum random walk of a 
strange form. They considered a quan-
tum random walk on the graph formed 
by a binary tree (of size related to the 
NAND tree being evaluated) attached 
to a long runway (see Figure 4). They 
then showed how, if one constructed 
an initial quantum system whose ini-
tial state was that of a quantum system 
moving to the right towards the binary 
tree, one could then obtain the value 
of the NAND tree by seeing whether 
such a quantum system scattered back 
off the binary tree, or passed through 
along the other side of the runway. The 
time required to see this scattering or 
lack of scattering was shown to be pro-
portional to O(N1/2). In other words, the 
NAND tree could be evaluated by using 
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O(N1/2) time by scattering a wave packet 
off of a binary tree representing the 
NAND tree problem. A few simple mod-
ifications can bring this in line with the 
standard computer scientists defini-
tion of a query algorithm for the NAND 
tree problem. Presto, out of a scattering 
experiment, one can derive a quantum 
algorithm for the NAND tree problem 
which gives a O(N1/2) algorithm outper-
forming a classical computer science 
algorithm. Building upon this work, a 
variety of different trees with different 
branching ratios and degrees of being 
balanced have been explored show-
ing quantum speedups. Indeed one 
remarkable aspect of much of this work 
is that while in many cases the classical 
versions of these problems do not have 
matching upper and lower bounds, in 
the quantum case matching upper and 
lower bounds can now be achieved.

finding hidden symmetries
If interference is a quantum effect that 
leads to polynomial speedups, what 
about the quantum algorithms that 
appear to offer exponential speedups, 
like in Shor’s algorithm for factoring or 
the quantum random walk algorithm 
of Childs et al. described here? Here it 
seems that just using interference by 
itself is not sufficient for gaining such 
extraordinary power. Instead, in the vast 
majority of cases where we have expo-
nential speedups for quantum algo-
rithms, a different candidate emerges 
for giving quantum computers power: 
the ability to efficiently find hidden 

symmetries. Here we review recent 
progress in algorithms concerning 
hidden symmetries. In many respects 
these algorithms date back to the earli-
est quantum algorithms, a connection 
we first briefly review, before turning 
to more modern ways in which this 
has influenced finding new quantum 
algorithms.

We say an object has symmetry if 
“we can do something to it without 
changing it.” The things we can do are 
described by the elements of a group 
and the object itself is a function that 

is defined on the same group. That 
this does not have to be as abstract as 
it seems is illustrated in Figure 5 for 
the group of three-dimensional rota-
tions and the icosahedral symmetry of 
a  soccer ball.

Given a group G the symmetry of a 
function f defined on G can range from 
the trivial (when only the identity of G 
leaves f unchanged) to the maximum 
possible symmetry where f remains 
unchanged under all possible group 
operations. The most interesting cases 
happen when f is invariant under only 
a proper subgroup H of G and the task 
of finding this H, given f, is known as 
the hidden subgroup problem. For many 
different types of groups we know how 
to solve this problem efficiently on a 
quantum computer, while no classical 
algorithm can perform the same feat. 
We claim that this is because quantum 
computers can more efficiently exploit 
problems with hidden symmetries.

To illustrate how quantum com-
puters are better suited to deal with 
symmetries, let’s talk about the sim-
plest symmetry one can talk about: the 
symmetry of flipping a bit. Consider 
the operation X of negating a bit and 
the identity operation I. If we perform 
X twice, we obtain the operation I of 
doing nothing at all, which shows that 
I and X together form a group. Next, 
consider representing how I and X 

figure 4. the nAnD tree algorithm of farhi, Goldstone, and Gutmann.10 

First, a tree is constructed where the presence or absence of leaves at the top of the tree corresponds 
to the binary input values to the nAnd tree problem. next, a wavepacket is then constructed which, 
if the tree were not attached, would propagate to the right. When the tree is attached, as shown, the 
value of the nAnd tree can be determined by running the appropriate quantum walk and observing 
whether the wave packet passes to the right of the attached tree or is reflected backwards.

Wavepacket

Answer

figure 5. the symmetries of a soccer ball.

Of all the possible three-dimensional rotations that one can apply, only a finite number  
of them leave the image of a standard soccer ball unchanged. This subgroup, the icosahedral  
rotation group with its 60 elements, therefore describes the symmetries of the object;  
http://en.wikipedia.org/wiki/File: Trunc-icosa.jpg/
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operate on a classical probabilistic bit. 
Such a binary system is described by  
a two-dimensional vector of prob-
abilities, corresponding to the prob-
ability p0 of being in 0 and p1 of being 
in 1. The operations I and X can then 
be represented on this system as the 
two-by-two matrices

In group theoretic parlance, we say that 
these two matrices form a represen-
tation of the group, which effectively 
means that the multiplication among 
these matrices mimics the operation 
among the elements of the group that 
is being represented.

But now notice how the matrices 
for I and X act on the vector space R2. 
Naturally, the identity matrix I leaves 
all vectors unchanged, but the X 
ma trix acts in a more interesting way. 
If X acts on the symmetric vector [1, 1],  
then, like I, it preserves this vector. If, 
on the other hand, X operates upon  
the vector [1, −1], then it multiplies 
this vector by −1. This new vector  
[−1, 1] still sits in the one-dimensional 
subspace spanned by the original  
[1, −1], but the direction of the vec-
tor has been reversed. In other words, 
the act of flipping a bit can naturally 
be represented down into its action 
upon two one-dimensional sub-
spaces: on the first of these the group 
always acts trivially, while on the other 
it always acts by multiplying by the 
scalar −1. Now we can see why clas-
sical probabilistic information is at 
odds with this symmetry: while we 
can create a symmetric probability 
distribution [1–2

, 1–2] wherein the bit flip 
X preserves this distribution, we can-
not create the other probability dis-
tribution that transforms according 
to the multiplication by −1: doing so 
would require that we have negative 
probabilities. But wait, this is exactly 
what the amplitudes of quantum 
computers allow you to do: to prepare 
and analyze quantum information in 
all the relevant subspaces associated 
with group operations such as flip-
ping a bit. Unlike classical comput-
ers, quantum computers can analyze 
symmetries by realizing the unitary 
transforms which directly show the 

effects of these symmetries. This, in a 
nutshell, is why quantum algorithms 
are better adapted to solve problems 
that involve symmetries.

The idea that symmetry is the excel-
sior of exponential quantum speed-
ups now has considerable evidence in 
its favor and is one of the major moti-
vators for current research in quan-
tum algorithms. Shor’s algorithm 
for factoring works by converting the 
problem of finding divisors to that of 
finding periods of a function defined 
over the integers, which in turn is  
the problem of determining the trans-
lational symmetries of this function. 
In particular Shor’s algorithm works 
by finding the period of the function 
f (x) = r x mod N where r is a random 
number coprime with N, the number 
one wishes to factor. If one finds the 
period of this function, i.e. the  smallest 
nonzero p such that f (x) = f (x + p),  
then one has identified a p such  
that xp = 1 mod N. If p is even (which 
 happens with constant  probability 
for random x), then we can express 
this equation as (x

p/2 + 1) (x
p/2 − 1) = 0 

mod N. This implies that the greatest 
common divisor of x

p/2 + 1 and N or 
the greatest common  divisor of x

p/2 − 1  
and N is a divisor of N. One can then 
use the Euclidean algorithm to find a 
factor of N (should it exist). Thus one 
can efficiently factor assuming one 
can find the period p of f (x). This fact 
was known before Shor’s discovery; 
the task of determining the period p is 
what requires a quantum computer.

How then, can a quantum algo-
rithm find the period p of a function 
f ? The answer is: by exploiting the 
just described friendly relationship 
between quantum mechanics and 
group theory. One starts with a system 
of two quantum registers, call them 
left and right. These are prepared into 
a state where with equal amplitude 
the left register contains a value x and 
the right register carries the corre-
sponding function value f (x). The hid-
den symmetry of this state is captured 
by the fact that it remains unchanged 
if we would and p (or a multiple of p)  
to the left register; adding a non-
multiple of p will, on the other hand, 
change the state. To extract this hid-
den symmetry, let us view the ampli-
tudes of the state as the values of  
a function from n bit strings to the 

complex numbers. We would like to 
use a quantum version of the Fourier 
transform to extract the symmetry 
 hidden in this function. Why the 
Fourier transform? The answer to 
this is that the Fourier transform is 
intimately related to the symmetry of 
addition modulo N. In particular if we 
examine the process of addition where 
we have performed a Fourier transform 
before the addition and an inverse 
Fourier transform after the addition, 
we will find that it is now transformed 
from an addition into multiplication 
by a phase (a complex number z such 
that |z| = 1). Addition can be repre-
sented on a quantum computer as 
a permutation matrix: a matrix with 
only a single one per column and row 
of the matrix. If we examine how such 
a matrix looks in the basis change 
given by the Fourier transform, then 
we see that this matrix only has entries 
on the diagonal of the matrix. Thus 
the Fourier transform is exactly the 
unitary transform which one can use 
to “diagonalize the addition matrix” 
with respect to the symmetry of addi-
tion, which in turn is exactly the form 
of the symmetry needed for period 
finding.

The output of the quantum Fourier 
transformation will reveal to us which  
symmetries the state has, and by re -
peat ing this Fourier sampling a few 
times we will be able to learn the exact 
subgroup that the state hides, thus giv-
ing us the period p (and hence allowing 
us to factor). Crucially the quantum 
Fourier transform can be implemented 
on a number of qubits logarithmic in 
the size of the  addition group, log N, 
and in a time polynomial in log N as 
well. If one were to attempt to mimic 
Shor’s algorithm on a classical com-
puter, one would need to perform a 
Fourier transform on N classical pieces 
of data, which would require N log N 
time (using the fast Fourier transform). 
In contrast, because Shor’s quantum 
algorithm acts on quantum ampli-
tudes, instead of on classical con-
figuration data, it leads to an efficient 
quantum algorithm for factoring.

This symmetry analysis results 
from the basics of the theory of group 
 representation theory: symmetries are 
described by groups, and the elements 
of these groups can be represented by 
unitary matrices. This is something 
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that classical probabilistic computers 
cannot exploit: the only way to repre-
sent a group on a classical computer 
is to represent it as by deterministic 
permutation. But while a group can 
be represented by unitary matrices, no 
such representation is possible using 
stochastic matrices. This, at its heart, 
appears to be one of the key reasons 
that quantum computers offer expo-
nential benefits for some problems 
over classical computers.

Given that Shor’s algorithm ex ploits  
symmetry in such a  successful way, it 
is natural to search for other problems  
that involve hidden symmetries. Follow-
ing Shor’s discovery it was quickly 
 realized that almost all prior quantum 
algorithms could be cast in a unifying 
form as solving the hidden subgroup 
problem for one group or the other.  
For Shor’s algorithm the relevant group 
is the group of addition modulo N.  
For the discrete logarithm problem the 
relevant group is the direct  product 
of the groups of addition modulo N. 
Indeed it was soon discovered that 
for all finite Abelian groups (Abelian 
groups are those whose elements all 
commute with each other) quantum 
computers could efficiently solve the 
hidden subgroup problem. A natural 
follow-up question is: what about the 
non-Abelian hidden subgroup prob-
lem? And, even more importantly, 
would such an algorithm be useful for 
any natural problems, as the Abelian 
hidden subgroup problem is useful for 
factoring?

One of the remarkable facts about 
the problem of factoring is its inter-
mediate computational complexity. 
Indeed, if one examines the decision 
version of the factoring problem, one 
finds that this is a problem which is in 
the complexity class NP and in the com-
plexity class Co-NP. Because of this fact 
it is thought to be highly unlikely that it 
is NP-complete, since if it were, then the 
polynomial hierarchy would collapse in 
a way thought unlikely by complexity 
theorists. On the other hand, there is 
no known classical algorithm for fac-
toring. Thus factoring appears to be of 
Goldilock’s complexity: not so hard as 
to revolutionize our notion of tractabil-
ity by being NP-complete, but not so 
easy as to admit efficient classical solu-
tion. There are, surprisingly, only a few 
problems which appear to fit into this 

category. Among them, however, are the 
problems of graph isomorphism and 
certain shortest-vector in a lattice prob-
lems. Might quantum computers help 
at solving these problems efficiently?

Soon after Shor’s algorithm was 
phrased as a hidden subgroup prob-
lem, it was realized that if you could 
efficiently solve the hidden subgroup 
problem over the symmetric group  
(the group of permutations of n objects), 
then you would have an efficient quan-
tum algorithm that solves the graph 
isomorphism problem. Further, Regev22 
showed how the hidden subgroup prob-
lem over the dihedral group (the group 
of symmetries of a regular polygon 
where one can not only rotate but also 
flip the object) relates to finding short 
vectors in a high dimensional lattice. 
Hence a hypothetical efficient quantum 
algorithm for this dihedral case could 
be used to solve such shortest vector 
problems. This in turn would break the 
public key cryptosystems that are based 
upon the hardness of these lattice prob-
lems, which are among the very few 
cryptosystems not broken by Shor’s 
algorithm. As a result of these observa-
tions about the non-Abelian hidden 
subgroup problem, designing quantum 
algorithms for such groups has become 
an important part of the research in 
quantum computation. While a certain 
amount of progress has been achieved 

(by now we know of many non-Abelian 
groups over which the hidden subgroup 
problem can be solved efficiently), this 
problem remains one of the outstand-
ing problems in the theory of quantum 
algorithms.

At the same time, going back to 
the Abelian groups, there has been 
quite some success in finding new 
 applications of the quantum algorithm 
for the Abelian hidden subgroup prob-
lem, besides factoring and discrete log-
arithms. Hallgren14 showed that there 
exists a quantum algorithm for solving 
Pell’s equation (that is, finding integer 
solutions x, y to the cubic equation x2 − 
dy2 = 1, see Table 1), while Kedlaya15 has 
described a quantum procedure that 
efficiently counts the number points 
of curves defined over finite fields. 
Furthermore, other efficient quantum 
algorithm has been found for, among 
other problems, determining the struc-
ture of black box groups, estimating 
Gauss sums, finding hidden shifts, and 
estimating known invariants.

simulating Quantum Physics
A final area in which quantum algo-
rithms have made progress goes back 
to the very roots of quantum computing 
and indeed of classical computing itself. 
From their earliest days, computers 
have been put to use in simulating phys-
ics. Among the difficulties that were 

table 1. some examples of integer solutions (x, y) to Pell’s equation x2 − dy2 = 1  
for  different values d.

Such solutions tell us what the units are of the number field Q[÷ ÷̀d] (the  rational numbers extended 
with the irrational ÷ ÷̀̀d) and thereby solve the unit group problem. hallgren’s result shows how this 
problem can be solved efficiently on a quantum computer, while no such algorithm is known for 
classical computers.

d x y

2 3 2

3 2 1

5 9 4
.
:

13 649 180

14 15 4
.
:

6,009 1,316,340,106,327,253,158 1,698,114,661,157,803,451

9,259,446,951,059,947,388 6,889,492,378,831,465,766

4,013,975 » 1.3 × 1044 81,644 » 1.6 × 1042

6,013 40,929,908,599 527,831,340
.
:
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soon encountered in such simulations 
was that quantum systems appeared to 
be harder to simulate than their classi-
cal counterparts. But, of course, some-
how nature, which obeys quantum 
theory, is already carrying out “the sim-
ulation” involved in quantum physics. 
So, if nature is carrying out the simula-
tion, then should we be able to design 
a computer that also can perform this 
simulation? This was in fact the seed of 
the idea that led to the original notion of 
quantum computing by Feynman.11

To put this in perspective, consider 
the problem of simulating classical 
physics. The miracle of reproducing 
classical physics on a classical com-
puter is that you can use many ‘par-
ticles’ with small state spaces (bits) to 
mimic a few particles that have very 
large state spaces. For this to be pos-
sible it is required that the number of 
bit configurations, 2(number of bits), is at 
least as big as the number of possible 
states of the physical system (which 
is the size of the particle’s state space 
exponentiated with the number of 
particles). As a result, we can simulate 
the solar system on a laptop.

Quantum computing does the same 
thing for quantum mechanical systems; 
now 2(number of qubits) is the dimension of 
the state space and it allows us to simu-
late other quantum physical systems 
that consists of few particles with expo-
nentially large state spaces. Here how-
ever, it appears essential that we rely 
on quantum computing components 
in order to simulate the truly quantum 
mechanical components of a physical 
system. A crucial question therefore is: 
which physical systems are interesting 
to simulate in such a manner?

While the complete answer to this 
question is not known, a deeper look 
at quantum algorithms for simulating 
quantum physics is now being under-
taken in several places. As an example, a 
group of physical chemists have recently 
compared how useful quantum comput-
ers would be for computing the energy 
level structure of molecular systems.5 
This is a classical problem of physical 
chemistry, and our inability to perform 
these  calculations robustly for large 
molecules is a bottleneck in a variety  
of chemical and biological applica-
tions. Could quantum computers help 
for solving this problem and outper-
forming the best classical algorithms? 

One of the  exciting findings in studying 
this problem was that a small quantum 
computer, consisting of only a few hun-
dred qubits, could already outperform 
the best classical algorithms for this 
problem. This small number makes it 
likely that among the first applications 
of a quantum computer will not be fac-
toring numbers, but instead will be in 
 simulating  quantum physics. Indeed, 
we believe that a  quantum computer will 
be able to  efficiently simulate my possi-
ble  physical system and that it  therefore 
has the  potential to have a huge impact 
on everything from drug  discovery to the 
rapid  development of new materials.

conclusion
The discovery that quantum comput-
ers could efficiently factor is, even 
today, difficult to really appreciate. 
There are many ways to get out of the 
conundrum posed by this discovery, 
but all of these will require a funda-
mental rewriting of our understanding 
of either physics or computer science. 
One possibility is that quantum com-
puters cannot be built because quan-
tum theory does not really hold as a 
universal theory. Although disappoint-
ing for quantum computer scientists, 
such a conclusion would be a major 
discovery about one of the best tested 
physical theories—quantum theory. 
Perhaps there is a classical algorithm 
for efficiently factoring integers. This 
would be a major computer science 
discovery and would blow apart our 
modern public key cryptography. Or 
perhaps, just perhaps, quantum com-
puters really are the true model of 
computing in our universe, and the 
rules of what is efficiently computable 
have changed. These are the dreams 
of quantum computer scientists look-
ing for quantum algorithms on the 
quantum machines they have yet to be 
quantum programmed. 
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