
ON THE INCLUSION PROPERTIES FOR MULTI-LEVEL CACHE HIERARCHIES

Jean-Loup Baer and Wen-Harm Wang

Department of Computer Science
University of Washington

Seattle, WA 98195

Abstract
The inclusion property is essential in reducing the cache coher-
ence complexity for multiprocessors with multilevel cache hier-
archies. We give some necessary and sufficient conditions for
imposing the inclusion property for fully- and set-associative
caches which allow different block sizes at different levels of
the hierarchy. Three multiprocessor structures with a two-level
cache hierarchy (single cache extension, multiport second-level
cache, bus-based) are examined. The feasibility of imposing
the inclusion property in these structures is discussed. This
leads us to propose a new inclusion-coherence mechanism for
two-level bus-based architectures.

1 Introduction

Caches have been used effectively to bridge the gap between
fast processor cycle times and slow memory access times. Cache
performance is mainly dependent on two factors: the hit ratio
and the access time. The hit ratio is, to a great extent, a
function of the size of the cache; the larger the cache, the higher
the hit ratio. However, to increase the cache size naively in
the hope of getting a better hit ratio can degrade the access
time. First, a given cache size imposes a physical limitation
on its speed: With the same technology, the larger the cache,
the slower it will be. Moreover, some technologies(e.g., GaAs)
impose restrictions on the size. In addition, optimizing the
speed of a small cache is easier than optimizing the speed of a
large one. Second, the virtual to real address translation and
the tag matching cannot be done totally in parallel with the
cache access when the cache size is large and the associativity
is insufficient. This effect further reduces the speed.

In spite of the above problems, the use of large caches is still
very appealing. On the performance side, large caches result
in high hit ratios which in turn reduce memory traffic. This
effect is especially valuable for multiprocessors. As to the cost
side, because memories are getting cheaper each year, large
caches become more affordable. Thus the design of efficient
large caches is becoming an important problem. In [8], an ex-
pedient virtual address caching scheme is proposed which elim-
inates the need for address translation on a cache hit. In [6],
an addressing strategy based on the most recently used(MRU)
information is exploited to speed the address translation and
cache access. Another promising scheme for dealing with large

CH2545-2/88/0000/0073$01.00 0 1988 IEEE

caches is based on the concept of multilevel cache hierarchies
13, 15, 161, in which smaller but faster caches are introduced to
reduce the gap further between fast processor cycle times and
relatively slow access times of large caches. The smaller first
level caches are fast ,&rd the address translation can be done in
parallel with data access if a virtual addressing caching scheme
is not used. The large higher level caches provide higher overall
hit ratios.

For multiprocessors, introducing cache hierarchies could ag-
gravate the well-known cache coherence problem. Authors of
[3,15,16] all suggest that the contents of the higher level caches
be a superset of those of the lower level caches so that the
higher level caches can shield the lower level caches from I/O
and cache coherence interference. Otherwise some of the gain
realized by the multilevel cache hierarchy would be lost by the
unnecessary blind checks and invalidations percolated to lower
Ievel of the hierarchy. The mechanism for imposing this kind of
inclusion without degradation in the performance is, nonethe-
less, not trivial. In [15], a weak form of inclusion is imposed
through “blind” invalidations of the lower level caches. In [16],
the inclusion property of the direct-mapped organization is con-
sidered l. A more comprehensive mechanism was given in [J],
where a replacement algorithm was proposed and necessary and
sufficient conditions for imposing the inclusion property were
given and proved for fully associative caches. In this paper we
extend the results in [3] to more general set-associative cache
organizations. We also investigate the effect of different block
sizes on imposing the inclusion property. These results are then
used to examine the impact of imposing the inclusion property
on cache coherence control for three different architectures.

The rest of paper is organized as follows: Section 2 briefly re-
views previous results on fully associative caches and extends
them to the case of different block sizes. Section 3 proves
some constraints on imposing the inclusion property for set-
associative cache hierarchies. Section 4 examines the impact of
the inclusion property and cache coherence on three different
architectures. Conclusions are drawn in section S.

2 MultiLevel Inclusion(ML1) Properties
for Fully Associative Caches

We shall use the same memory hierarchy model as in [3]. To
make this paper self-contained, we briefly state the model and
the previous results for fully associative caches with the same
block size. We then extend the results to different block sizes.

lUnfortunately, the condition for imposing the inclusion property is
given incorrectly.

73

2.1 MultiIevel cache hierarchy and ML1

A multilevel cache hierarchy consists of h levels of caches, C,,,
. . . . C, and forms a tree, i.e., each cache at level C;+l is shared
by one or more caches at level Ci and a cache at level Ci is a
direct child of only one cache at level Ci+l (see the examples of
Figure 7). A processor reference is serviced by the cache closest
to the processor that contains the data. (We assume that all
references are for real addresses.) At the same time that cache
provides information to the caches on the path between itself
and the processor. This procedure might displace items present
in those intermediary caches. On the basis of this model, we
say that:
“A MultiLevel cache hierarchy has the inclusion property(ML1)
if the contents of a cache at level i-tl, C;+l, is a superset of
the contents of all its children caches, Ci, at level i.” This
definition implies that the write-through policy must be used
for lower level caches. As we will assume write-back caches in
this paper, the ML1 is actually a “space” MLI, i.e., space is
provided for inclusion but a write-back policy is implemented.

It has been shown [ll] that in a single processor environment
the ML1 property cannot be maintained with a local LRU al-
gorithm. Moreover, in a multilevel cache hierarchy for multi-
processors neither a local LRU nor a global LRU (where all
references to a Ci cache are percolated to its parent for rear-
ranging the LRU stack at the Ci+i level) can guarantee the
MLI property even when the size, or capacity, (i.e., the num-
ber of data bytes) of every Ci+l cache is strictly greater than
the summation of the sizes of all its children Ci caches. More
formally, let mi+l denote the size of a Ci+l cache and let m;(k)
denote the size of the Xtth Ci cache which is a child of the Ci+l
cache. Then,

Theorem 1. Under a global LRU algorithm, the conditions
that the block size of caches in the hierarchy are the same and
that m;+l > C,“==, m;(k), for 1 5 i < h, are not sufficient for

the ML1 property to hold.

A proof by counter-example is given in [3].

A mechanism ensuring the ML1 property is presented in the
following section.

2.2 Necessary and sufficient conditions for im-
posing ML1

The ML1 property can be imposed by associating with each
block in a Ci+l cache a counter that holds the number of Ci
caches in which the block is also resident. This counter has
logz(N + 1) bits if the Ci+l cache has N children. When a
block is loaded in a Ci cache from its parent Ci+l cache, the
counter for the block in the Ci+l cache is incremented by one.
When a block is replaced in a Cl cache, the counter in the
parent C2 cache is decremented by one. A block is a candidate
to be replaced if its associated counter has value 0 (called the
overflow state). Then the replacement algorithm that is used
as one of the conditions for the ML1 to hold is:
Algorithm I (I stands for inclusion)
(a) Lowest level (C,): Any replacement algorithm will do (e.g.,
local LRU). Notify the parent cache (C,) of the block being
replaced.

(b) Other levels : Replace the block which is in the overflow
state. If there is more than one, choose one. If there is none
(this won’t happen when MLI is enforced), randomly choose
one block. Notify the parent cache of the block being replaced.

When using the above mechanism, the necessary and sufficient
condition for guaranteeing the ML1 property is that the size of
each Ci+l cache is not smaller than the sum of the sizes of its
children Ci caches. More formally:
Theorem 2. While using the replacement algorithm I the MLI
property holds iff rn+l 2 C,“=, mi(k).

The proof.is given in [4].

We now extend this result to the case where Ci+l and Ci have
different block sizes. We assume that all Ci caches have the
same block size Bi although their capacities can be different.
We also assume that Bi+l 2 Bi (the opposite would not make
much sense from an architectural viewpoint), and that the ratio
Bit1 /Biis a power-of-two integer 2* (this is reasonable since the
Bi’s are powers of 2). We denote by 4; the number of blocks
in the jth Ci cache; thus its capacity is mi(j) = pfBi. The
extension of Theorem 2 to caches with different block sizes is:

Theorem 3. While using the replacement algorithm I and
if Bit1 is an integral power of two multiple of Bi, the MLI
property holds iff mi+l 2 C~“=, mi(k) x w.

Proof:
Let p be the number of blocks in Ci.+1 and let q = cg,qf
be the total number of blocks in its children Ci caches. The
inequality in the theorem statement can be restated as:

PBiti 2 QBiBi+l/Bi

orplq

Let us denote the blocks in theC;+l cache by J~~~,,.Z~+,,,!&;,.
Each block LFtl of size Bi+1 consists of 2* sub-blocks of size
Bi , say L$ll, Li”;i, L;yj:‘.

We prove by contradiction that it is necessary that p 1 q.
Assume that p < q and that all caches are empty. Consider the
sequence of references to the first bytes of memory addresses
0, Bi+, , 2B;+l ,..., (p - l)Bi+l . The corresponding distinct
blocks of size BitI will be loaded in Ci+l and the corresponding
distinct (sub)blocks of size B; will be loaded in the Bi caches.
Let the next reference be to memory address pBi+l . There is
no room in Ci+l for the block starting at that address while
we have empty slots in the Ci caches which can receive the
corresponding sub-block. Since there is no block in overflow
state, the ML1 property as defined previously cannot hold and
hence we must have p 2 q.

The sufficient part of the theorem can be proved easily. Since
p 1 q, we have a one-to-one mapping from a block in Ci to a
blockin C+l and we are reduced to the case of Theorem 2. q

3 Multilevel Inclusion Properties for Set
Associative Caches

In Section 2, we stated the necessary and sufficient conditions
to impose ML1 in fully associative caches. We now treat the
more realistic, and slightly more complex, case of set associative
caches. Let us denote as:

74

- log.% - 1ogB; -

Tag Set Number Address in block

Figure 1: Cache addressing format

Size(i), the capacity,

Bi, the block size,

S;, the number of sets,

Ai, the set associativity

of a Ci cache. We restrict ourselves to the most commonly used
set mapping; in this case the various fields of an address follow

the scheme of Figure 1 and we have:

Size(i) = AiBiSi

As before we assume that Bi 5 Bi+l and that Bi+l / Bi is

an integer 2”. Note that the degree of associativity of a fully
associative cache is the number of blocks in the cache.

In Theorems 4 and 5 we treat the uniprocessor case. This is
extended in Theorem 7 for multiprocessor architectures.

Theorem 4 considers the rather improbable case where the
number of sets in the C; cache is less than 25. A possible
interpretation for this is to consider that Ci is a very small
on-chip fully-associative translation look-aside buffer(T3) and
that C;+r is a back-up translation buffer with several entries

(per block size Bi+l) being loaded at once. For example, one
could have 4 entries in the on-chip TB (Si = 1, Bi = 1, A; = 4)
backed up by a TB with Bi+l = 8. Theorem 4 states the
conditions that must be imposed on Ai+l in order for ML1 to

hold.

Theorem 4.

If Si< w , the ML1 holds under replacement algorithm I iff
Ai+l> AiX Si.
Proof:

Ai+l> Ai x Si implies that each set of a Ci+r cache alone al-
ready satisfies the condition of Theorem 3. The sufficient con-
dition is readily proved.

Let us refer to Figure 2 for proving the necessary condition.
From the mapping, we see that, in the worst case, Si sets of
C; can all map to the same set of Ci+r . Since there are Ai
blocks in a C; set, there is a total of SiXAi blocks that can be
mapped into the same set. If the blocks are far apart * and

do not belong to a common Ci+r block, (an example of two far
apart blocks is shown in Figure 2b) then the ML1 cannot hold
unless Ai+ AiX 5’;. Cl

From now on, we assume Si> Bi+l/Bi.

Lemma 1.
If ML1 holds then Ai+* 2 A;x v.
Proof:

We use Figure 3 to aid in the proof. We see that there is a total
of 2’ sets which can be mapped to the same Ci+r set. This

*It is reasonable to assume that the number of tag bits are large enough
to make this “far-apart” possible

I
Tag Set no. Addr. in block Ci+l

Tag
[a)

Set no. Addr. in bk. C;

oooooooooxxx

1 00000001xxx

(b)

Figure 2: the case when S; < w (a) and an example of
two far apart Ci blocks, which ma; to the same Ci+r set but
different Ci+r blocks (b).

1 Tag 1

Tag

Set no. 1 Addr. in bk 1 ci+l

1-y

Set no. Addr. in bk ci

Figure 3: Situation for Lemma 1

I Tag Set no. Addr. in bk

I+-I-I
Y s

Tag I Set no. Addr. in bk

Figure 4: Situation for Lemma z

Ci+l

Ci

Set no. Addr. in bk

Tag YYYYYYYYYY XxXx

‘7’

I Tag YYYYYYY xx

c2

Cl

Figure 5: Example 1

implies that there are Aix2” Ci blocks that can be mapped
into the same Ci+r set. Again, as we stated in the proof of
theorem 4, these blocks can be far apart and may not belong
t0 a common Ci*1

Ai+ AiX*.
block. Thus, the ML1 cannot hold unless

El

Lemma 2.

If ML1 holds then A;+12 AiX&.
Proof:

Case 1: * 2 -&: true from Lemma 1.

Case 2:9 < &-.

This case is depicted in Figure 4. Again we see that there is
a total of 2’+* Ci sets which can be mapped to the same Ci+r
set, where Y+= is &. This means that there are AiX2’+’ Ci
blocks which can be mapped into the same Ci+l set. As stated
above, these blocks can be far apart and may not belong to a
common C;+r block. Thus the ML1 cannot hold unless Ai+l>

-4X&- 0

We show here two examples, one for each of the above lemmas,
to clarify further the above necessary conditions.

75

Example 1 (cf. Figure 5)
Cl: Size(l) = 512, Br = 4, Sr = 128, A1 = 1
cz: Size(2) = 32K, Bz = 16 Sz = 1024, A2 = 2

We cannot have ML1 since A2 < AlBz/BI = 4. For example
Cl blocks at address 0, lGK+4 and 32K+8 map to set 0, 1, and
2 in Cl and to the same set (set 0) in Cs. The latter needs to
be at least 4-way set associative.

Example 2 (cf. Figure 6)
c-1: Size(l) = 1024, Br = 4, Sr = 256, A1 = 1
cz: Size(P) = 2048, B2 = 16, S2 = 32, AZ = 4

We cannot have ML1 since A2 < AISlI.92 = 8 although AZ =

AI&/&. For example, Cr blocks at address 0,512,1028, 1540

and 2056 map to set 0, 128,1, 129 and 2 in Cr and to the same
set (set 0) in C2. The latter needs to be at least 8-way set
associative.

In general, the capacity of the second level cache will be much
larger than the capacity of the first level cache and therefore
the number of sets S;+r will be greater than Si. Therefore the
situation arising in Lemma 1 will be the most common.

Theorem 5.
The ML1 holds under replacement algorithm I iff Ai+l LAiXKp
where K is max(%, -$).
Proof:
The “only if’ part is proved directly from Lemmas 1 and 2.
We prove the “if part by considering two cases.

Case 1: * 1 &.
Suppose the ML1 property does not hold; then there must be
a block a which resides in Ci but not in Ci+r . According to
the set mapping as shown in Figure 3, block a is mapped to
set b of C;+r where b = [a/2”]. From this mapping, we know
there are at most 2’~ A; blocks in C; , including block a, that
can be mapped to the C;+r set b. Now the proof is reduced to
a fully associative cache case, with set b of C;+r corresponding
to 2’~ Ai Ci blocks. As the replacement algorithm I is used
and Ai+*> Ai x w, we know from Theorem 3 that block a
can a1wal.s be in C,:+r . This contradicts the assumption that a
cannot be in C;+r . Thus, the ML1 property holds in this case.

Case 2:y < -$-.
Again suppose Iv??1 does not hold; then there must be a block a
that is in Ci but not in Ci+r From Figure 4, we see there are at
most 2SfZ~ Ai blocks including block a which are in Ci and are
mapped to the same set b in Ci+r , where b = mod([a/2”], 29).

Since Ai+l> AiX &= AiX G = A, x “‘f’, set b has at L
least as many C;+r blocks as the total coiresponding C; blocks.
Again, set b itself can be treated as a fully associative cache
and our previous result of theorem 3 shows that block a can
always exist in Ci+r This is a contradiction; i.e., the ML1
property holds. n

For purpose of completion, we state without proof the following
theorem for the impractical case when Bi+l< Bi.

Theorem 6.
If Bi+r< Bi then ML1 holds under replacement algorithm I iff
Size(C;+r) 2 Size(C;) and A;+l> Ai.

Set no. Addr. in block

Tag YYYYYXXXX

l--p I-l s

Tag YYYYYYYYXX

c2

Cl

Figure 6: Example 2.

For multiprocessors where a Ci+r cache is shared by a number
Cmax of Ci caches, the above results can be easily generalized
if we make the practical assumption that all caches on the same
level are identical. They can be viewed as a single cache with a
set associativity which is the summation of the set associativ-
ities of all caches. We include here the multiprocessor version
of Theorem 5. Its proof is a straightforward extension of the
proof of Theorem 5.

Theorem 7
The ML1 holds under replacement algorithm I iff
A;+.12 C$~~mosAi(k)XK, where li is max(v, &).

As a final example that we will see later consider the organiza-
tion of a level-two cache Cz of capacity 256K bytes that is to
be shared by Cr caches of capacity 16K, direct mapped(A=l),
and block size Br=16. If we have Bz=Br=16, then we can have
16 Cr caches sharing Cz as long as Cz is 16-way set associative.
If we have &=4Br=64 and do not want to change Cz’s set
associativity, then we must restrict the sharing to 4 Cr caches.
Finally, if we want all 16 Cr caches to share Cz with 82=4&,
and keep MLI, then C2 must have a 64-way set associativity.
It is necessary to look at alternative ways of imposing MLI(cf.
Section 4.3).

In summary, in this section we have presented several condi-
tions for having the inclusion property for set-associative cache
hierarchies in which different blocks sizes are allowed at dif-
ferent levels. In practice we will have Size(i + 1) >> Site(i)
(and hence Si+r> Si) and Bi+r> B;. In this context, Theorem
7 states the most important result of this section. namelv: In
order to realize the inclusion property in a cache hierarchy, the
degree of set associativity of a parent cache must be at least
as large as the product of the number of its children, their set
associativity, and the ratio of block sizes.

4 Impact of ML1 and Cache Coherence
on System Structure

The emergence of cache hierarchies and means to manage them
in a reasonable manner have motivated the results of the pre-
vious two sections. Among the organizations that have been
proposed, the three that we describe now seem to have at-
tracted the most interest. Because all three limit themselves to
two levels, we shall do the same here.

The first organization is simply to extend a single level cache to
a two-level one. Many examples with on-chip read-only caches
follow this paradigm. A more attractive architecture is to con-
sider a shared-memory multiprocessor where each processor has
a two-level cache hierarchy: A full-fledged small and fast in-
struction and data cache Cr backed up by a large slower second-

76

c2

+$I Cl Cl

0 P P

. 1 Mem]

Figure 7: Three multiprocessor structures

level cache Cz . A busing structure connecting the second-level
caches leads to the multiprocessor shown on Figure 7a.

The second organization, exemplified by the Facom architec-
ture [9] for the uniprocessor case, is what we call a multiport

cache hierarchy. It consists of a second-level cache C’s shared
directly by a limited number (say at most 4) of first level caches
C, as shown in Figure 7b. Of course, in principle this architec-
ture can be extended to one where there would be several C2
caches. Cache coherence between the Cr caches is performed
using a directory approach [5, 31.

The third organization, or bus-based hierarchy, consists of a
very large second-level cache Cz , “an order of magnitude larger
than the sum of all the next lower caches” [15], being shared by
up to two dozen first-level caches Cr , Cache coherence between
Cr caches is achieved through some bus-based protocol [2, 141.

An extension of this architecture would consider a hierarchy of
buses, i.e., the system would contain several clusters of second-
level cache, first-level caches and associated processors with
the clusters being connected by a common bus as shown in
Figure 7c.

It is the consensus that all these existing or proposed architec-
tures are practical only if some inclusion property is imposed
(note that the hierarchy implemented on the Facom does not
follow this rule and therefore it suffers from severe inefficien-
cies). Although we only have seen proposals where the block
sizes at the two levels are the same, we show that this assump-
tion is not always warranted if we wish to have cost-effective
hierarchies. By the same token, the constraints to attain inclu-
sion imposed in the previous section might have to be relaxed.
We explore these various alternatives in the context of the three
organizations of Figure 7.

4.1 Extension of a single level cache

The motivations for the replacement of a single level cache by a
two-level hierarchy have been given in our introductory section.
Here we examine the contradictory impacts of parameters such
as cache sizes, block sizes, associativity and inclusion properties
when the goals of the various comnonents of the hierarchv a.re
taken into account.

Consider first the benefits of a cache hierarchy. Using a trace-
driven simulation (VAX traces of a mix of system and appli-
cation programs), Short [13] reports a 15-20% decrease in ex-
ecution time when backing up a 16K Cr by a 256K Cz . In
his simulation for a uniprocessor, he assumes the cycle time for
the second level and the memory access time to be respectively
4 and 15 times that of the first level. The same block size is
assumed for Cr and C2 . More dramatic improvements are re-
ported when the memory access time is 30 or GO times that of

Cl .

Clearly, this increase in performance is not achieved without a
cost - that of the Ca cache. A better comparison, yielding ap-
proximately equal cost in a multiprocessor environment, would
be to compare the above structure with a 32K Cl that would
have to include a “fast” snoopy-cache mechanism. In this case,
the performance improvement, of the order of 6-S% [13], is still
quite significant. Note that in the two-level hierarchy following
the present organization, the snoopy mechanism needs to be
implemented solely at the second level. Therefore, it does not
have to be as optimized as if there were a single cache because

the first level Cl , and hence the processor, will most often be
shielded by the C’z cache from cache coherence and I/O effects.
Coherence at the first level is very easy to obtain as shown
below.

The improvements in performance require Cr to be as fast as
possible. This fact argues for a small, direct-mapped cache and
hence a rather small block size B1. For instance, a 16K cache
with a 16 bytes block size could have a 40ns. cycle time match-
ing a fast, but not superfast, processor. Consider now the 256K
Ca backing up this 16K Cr cache. If we keep the same block
size and allow a four-way set associativity, we would have a
tag memory of (256K/16) tags of 19 bits (16 for address, one
each for valid, clean/dirty, and inclusion) plus additional bits

for protection and replacement algorithm purposes, i.e., of the
order of 40 to 48Kbytes with most of it having to be dupli-
cated for snooping purposes in a multiprocessor environment.
Although memory is cheap, this cache is fast memory and hence
not inexpensive. An alternative is to quadruple the block size

in C2 , since this change is still compatible with the previously
stated conditions for inclusion, and use a sector (sub-block) or-
ganization [12]. Now the number of tags has decreased by a
factor of 4 but the length of the tag is increased by 9 bits (3
bits for each of the 4 sub-blocks instead of 3 bits for the whole
block) for validity, clean/dirty and inclusion states. Overall the
tag memory size has been reduced by well over 50%.

Speed considerations have led us to a small Cl cache and cost-
effectiveness points towards a large sector organized Ca cache.
A simple coherence control at the Cl level and a unified coher-
ence mechanism between the two levels are two additional ad-
vantages that can be brought forth by the sector organization.
Recall that in a sector cache [s], we can distinguish between
three logical block sizes, namely:

l The block tag-size imposed by the formula:

capacity = block tag-size x set associativity x number
of sets

l The block coherence-size, i.e., the unit of size for which
cache coherence is maintained. Naturally, the block tag

size is a multiple of, or equal to, the coherence-size.

. The block transfer-size, i.e., the amount of data fetched
on a miss (of course the tag-size is a multiple of, or equal
to, the transfer-size).

It is apparent that we should choose Br as the coherence-size;
having a coherence-size larger than B1 does not make sense
and having it smaller complicates the logic in Cr . Then the
transfer-size will be a multiple of, or equal to, Br. The first
level cache misses, replacements, and requests for permissions
to write clean blocks are directed to the second-level cache. The
coherence problem between Cz caches is solved on a sub-block
(of size Br) basis. It is only when a sub-block in Cz has its
inclusion bit set and has to be invalidated or written-back that
the corresponding Cr needs to be disrupted. The only action

at the Cr level is either to purge (write-back) or invalidate a
given block. This can be implemented very simply since it

requires only one line to widen the path to transmit the order
and to provide a “cycle stealing” mechanism in the Cr cache
controller.

In summary, this organization is quite attractive. It combines

a fast access to a small cache, a simple coherence mechanism,
and the ability to have an economical large second-level cache.

Its main weakness is that Cz is completely allocated to a single
processor. The other two organizations that we discuss now

allow the sharing of Cz but this raises new problems.

4.2 Multiport second-level cache

In the multiport two-level hierarchy, a large Cz is shared by n
Cr caches. There are at least three reasons why this it must be
small.

1. The multiport organization requires arbitration of access
from the Ct caches to the Cs The logic to do so is
expensive and severely limits the value of n [7].

2. The cache coherence mechanism bet,ween the first level

caches must be implemented according to a directory
bas?d scheme since the Cr caches do not share a com-
mon bus. The amount of tag memory to do this is not
trivial: It requires R. + 1 bits in C, per coherence-size
block if we want to avoid broadcasts [5] and 2 bits only
[I] if we trade tag memory for slightly more complex pro-
tocols. In addition, the (hardware) coherence controller
is not that simple.

3. 12 has a multiplicative effect with respect to the inclusion
properties (recall Theorem 7). Thus the set associativity
grows proportionally to n and this will limit very quickly
the block tag-size since the set associativity is also pro-

portional to &/Br.

In order to illustrate these points, we assume the same param-
eters for the first-level caches as in the previous organization
and the same total capacity for Cz . That is, the size of Cz is
256 Kbytes. Each Cl is 16 Kbytes, direct mapped (Al = I),
has a 16 byte block size (Br = 16), and therefore has 1024
sets (Sr = 1024). From Theorem 7, we know that the set-
associativity of Cz must be at least AZ 2 nA1. If we want as

large a block tag-size as before (Bz = 64), then we must have
AZ 2 4nA1. This gives a practical upperbound for n to be 4
resulting in a 16-way set associative Cz .

This last figure clearly restricts the range of systems for which
this organization can be practical to powerful mainframes with
very tightly-coupled multiprocessing. If we want to increase the
number of processors, we need to replicate the cache hierarchy
and have some coherence mechanism between the second-level
caches. This extension will add complexity to the level two

coherence controller since the protocols will have to take into
account not only level one coherence orders but also those com-
ing from level two. Thus, the circuitry needed at the second
level (extensive tagging, coherence mechanism for the two lev-
els, very high set-associativity, multiport arbitration) becomes

formidable.

This organization appears to have a limited appeal. The next
organization will allow more extensive parallelism and a shared
CZ cache. However, the price to pay will be weaker inclusion

properties.

4.3 Bus-based hierarchy

The bus-based hierarchy, or cluster, organization (cf. Figure
7c) can be seen as an extension of the previous two organi-
zations. Like the first organization, the second level caches
are bus-connected (inter-cluster bus); like the second one, each
level two cache is shared by some level one caches and associ-
ated processors to form a cluster. The main difference, how-
ever, is the fact that we want a medium number, say 16 to 24,
of Ci caches sharing a Cz . This requires that the Ci caches
themselves be connected by a shared-bus (intra-cluster bus).
The flexibility to add Ci caches in a cluster, or to augment the
number of clusters, is not achieved without some overhead. In
particular:

. As a relatively large number of Ci caches are connected
through the intra-cluster bus, a full-fledged (shared-bus)
cache coherence protocol needs to be implemented at that

level. The complexity of the implementation tends to
slow down the cache [lo] and impact on the processor

cycle time.

l Imposing the inclusion property with conditions as de-

fined in Section 3 becomes impractical since, even at equal
block sizes, the set associativity of Cz becomes too large.
Since the inclusion property is still needed so that inter-
cluster coherence can remain manageable, we must find
an alternative to algorithm I.

A first solution to this problem, assuming equal block sizes at
the two levels, is proposed by Wilson [15]. In his scheme, each
time a block in a cache Cz is to be replaced, an invalidation sig-
nal is sent on its intra-cluster bus (Wilson does not elaborate on

clean/dirty blocks and invalidate vs. purge in case of a write-
back policy at the Cr level). This policy ClearlY will enforce
inclusion but generates unnecessary traffic on the intra-cluster
bus when there is no copy of that block in any of the Cr caches.
Similarly, and maybe more importantly from the performance
viewpoint, invalidations of this type might be percolated from
the second to the first level to ensure the inter-cluster coher-
ence.

In order to prevent these “blind” invalidations, we can associate
an inclusion bit (III) with each block in Cz . IB is on if there is
at least one Cr cache which has a valid copy of the block. IB is
set on any miss to a Cr served by Cz (this includes both hit and
miss in Cp). It is reset (IB off) on a write-back from a Cr that
either invalidates all other intra-cluster copies or that is known
to come from the only Cr with a valid copy (this depends on
the intra-cluster protocol).

Setting the clean/dirty (CD) bit in Cz , where the clean/dirty
property is with respect to other clusters and main memory, is
not trivial. CD is set (clean) on a read miss served by Cs and
reset (dirty) on a write miss served by Cz . Furthermore, Cz
needs to listen to the transactions on the intra-cluster bus to
reset CD on any transaction that will modify the clean status
of the block in any of the Cr caches (this again depends on the
level one protocol).

With the help of these IB and CD bits, we can now extend any
of the MOESI protocols [14] for inter-cluster coherence with
as little interference at the first level as possible. We sketch
here how this could be done. In any MOESI protocol, we need
at least three states: Invalid, Clean and Dirty (extra states
are almost always included for improving performance). We
now have a corresponding minimum of 5 states for a Cz block,
namely:

1. Invalid.

2. CleanNotI: Clean in Cz only (IB off, CD on).

3. CleanI: Clean in Cz and possibly some Cr (IB on, CD
on).

4. DirtyNotI: Dirty wrt main memory and other clusters but
up to date (i.e., no valid copy in the Cr ‘s) (IB off, CD

off)

5. DirtyI: Dirty and not up to date (IB on, CD off).

The inter-cluster references are then treated as follows (from
the intra-cluster viewpoint).

If the block in Cz is in the Invalid, CleanNotI, or DirtyNotI,
there is no action to be taken at the intra-cluster level.

If the block in Cz is in the Clean1 state, no action is to
be taken on a read transaction. A write or invalidate has
to be percolated (as an invalidation) to level one and IB
is reset. This change in IB is required since, for some
inter-cluster protocols, the block in Cz can still be valid.

If the block in Cz is in *he Dirty1 state, a purge will be
sent to level one. The CD bit will be set and, depending
on the type of inter-cluster transaction and the choice in
implementation, the state of the block in Ca will become
either Invalid, CleanNotI or CleanI.

Finally, if a block in Cz is to be replaced, then only when the
IB bit is set will we have to send a purge or an invalidation on
its intra-cluster bus.

This bus-based organization is certainly more flexible than the
multiport cache one. When compared with the first organiza-
tion it presents the advantage of the sharing of a Cz cache and
from this viewpoint is more economical. The drawback is the
need for inclusion control. Performance studies to analyze if
the first organization or if the bus-based (with or without the
IB/CD control) is more cost-effective are in progress.

5 Conclusion

The multilevel cache hierarchy is a promising approach to the
design of large caches. To ensure simple cache coherence proto-
cols for systems with a multilevel cache hierarchy, the inclusion
property should be imposed. In this paper, we have presented
several conditions for imposing the inclusion property for fully-
and set-associative cache hierarchies which allow different block
sizes on different levels. Among our results, the most impor-
tant one shows that to realize the inclusion property in a cache
hierarchy, the degree of set associativity of a parent cache must
be at least as large as the product of the number of its children,
their set associativity, and the ratio of block sizes.

We have exa.mined several organizations to study the feasibility
of applying these results to ensure an efficient cache coherence
control. We have found tha.t it is feasible to satisfy the condi-
tions in the organization which extends a single level cache in
the shared-bus organization to a two-level cache. For a multi-
port second-level cache organization, the inclusion constraints
seem to be too strict and this seriously limits the number of
first-level caches. As for the bus-based hierarchy, satisfying the
conditions as stated above is not practical. Instead, we have to
resort to broadcast invalidations. We have presented a scheme
that reduces the number of broadcasts to only those that are
necessary.

Clearly some analytical and trace driven performance studies
are in order to assess the usefulness and the system impacts of a
multilevel cache hierarchy. We are in the process of performing
such studies. As a final remark, it is interesting to note that our
efforts in formally stating the conditions for multilevel inclusion
can also be used in reducing the traces for trace-driven cache
simulations.

Acknowledgment
This work was supported in part by NSF Grant DCR-8503250,
CCR-8702915 and CCR-8619G63.

References

[l] Archibald,J. and J.-L. Baer. An economical solution to
the cache coherence problem. In Proc. 11th Symposium
on Computer Architecture, pages 355-362, 1984.

[2] Archibald,J. and J.-L. Baer. Cache coherence protocols:
Evaluation using a multiprocessor simulation model. ACll4
TOCS, 4(4):273-298, November 1986

79

PI

[41

[51

161

[71

PI

PI

Baer, J.-L. and W.-H. Wang. Architectural choices for
multi-level cache hierarchies. In Proc. 16th International

Conference on Parallel Processing, pages 258-261, 1987.

Baer,J.-L. and W.-H.Wang. Architectural choices for
multi-level cache hierarchies. Technical Report TR 87-
01-04, University of Washington, January 1987.

Censier,M. and P.Feautrier. A new solution to coher-
ence .problems in multicache systems. IEEE TC, C-
27(12):1112-1118, December 1978.

Chang, J.H., H. Chao and K. So. Cache design of a sub-
micron cmos system/370. In Proc. 14th Symposium on
Computer Architecture, pages 208-213, 1987.

Enslow Jr., P.H. Multiprocessor organizations - a survey.
Computing Surveys, 9(1):103-129, March 1977.

Goodman, J. Coherency for multiprocessor virtual address
caches. In Proc. Architectuml Support for Programming
Languages and Operating Systems(ASPOLS-II), pages 72-
81, 1987.

Hattori,A., Koshino,M. and S.Kamimoto. Three-level hi-
erarchical storage system for FACOM M-380/382. In Proc.
Information Processing IFIP, pages 693-697, 1983.

[W

1111

1121

[I31

P41

Katz, R., Eggers, S., Wood, D., Perkins, C. and R.G. Shel-
don. Implementing a cache coherence protocol. In Proc.
18th Symposium on Computer Architecture, pages 276-
283, 1985.

Lam,C-Y. and S.Mudnick. Properties of storage hierar-
chy systems with multiple page sizes and redundant data.
ACM TODS, 4(3):345-367, September 1979.

Liptay, J. S. Structural aspects of the System/360 model
85 part II - the cache. IBM System Journal, 7(1):15-21,
1968,

Short, R. T. A Study of Multilevel Cache Memories. Mas-
ter’s Thesis, University of Washington, 1987.

Sweazey, P. and A.J. Smith. A class of compatible cache
consistency protocols and their support by the IEEE fu-
turebus. In Proc. 13th Symposium on Computer Amhitec-
ture, pages 414-423, 1986.

[15] Wilson Jr., A.W. Hierarchical cache/bus architecture for
shared memory multiprocessors. In Proc. 14th Symposium
on Computer Architecture, pages 244-252, 1987.

[16] Winsor, D.C. and T.N. Mudge. Crosspoint cache architec-
tures. In Proc. 16th International Conference on Parallel
Processing, pages 266-269, 1987.

80

