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Abstract 
The inclusion property is essential in reducing the cache coher- 
ence complexity for multiprocessors with multilevel cache hier- 
archies. We give some necessary and sufficient conditions for 
imposing the inclusion property for fully- and set-associative 
caches which allow different block sizes at different levels of 
the hierarchy. Three multiprocessor structures with a two-level 
cache hierarchy (single cache extension, multiport second-level 
cache, bus-based) are examined. The feasibility of imposing 
the inclusion property in these structures is discussed. This 
leads us to propose a new inclusion-coherence mechanism for 
two-level bus-based architectures. 

1 Introduction 

Caches have been used effectively to bridge the gap between 
fast processor cycle times and slow memory access times. Cache 
performance is mainly dependent on two factors: the hit ratio 
and the access time. The hit ratio is, to a great extent, a 
function of the size of the cache; the larger the cache, the higher 
the hit ratio. However, to increase the cache size naively in 
the hope of getting a better hit ratio can degrade the access 
time. First, a given cache size imposes a physical limitation 
on its speed: With the same technology, the larger the cache, 
the slower it will be. Moreover, some technologies(e.g., GaAs) 
impose restrictions on the size. In addition, optimizing the 
speed of a small cache is easier than optimizing the speed of a 
large one. Second, the virtual to real address translation and 
the tag matching cannot be done totally in parallel with the 
cache access when the cache size is large and the associativity 
is insufficient. This effect further reduces the speed. 

In spite of the above problems, the use of large caches is still 
very appealing. On the performance side, large caches result 
in high hit ratios which in turn reduce memory traffic. This 
effect is especially valuable for multiprocessors. As to the cost 
side, because memories are getting cheaper each year, large 
caches become more affordable. Thus the design of efficient 
large caches is becoming an important problem. In [8], an ex- 
pedient virtual address caching scheme is proposed which elim- 
inates the need for address translation on a cache hit. In [6], 
an addressing strategy based on the most recently used(MRU) 
information is exploited to speed the address translation and 
cache access. Another promising scheme for dealing with large 
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caches is based on the concept of multilevel cache hierarchies 
13, 15, 161, in which smaller but faster caches are introduced to 
reduce the gap further between fast processor cycle times and 
relatively slow access times of large caches. The smaller first 
level caches are fast ,&rd the address translation can be done in 
parallel with data access if a virtual addressing caching scheme 
is not used. The large higher level caches provide higher overall 
hit ratios. 

For multiprocessors, introducing cache hierarchies could ag- 
gravate the well-known cache coherence problem. Authors of 
[3,15,16] all suggest that the contents of the higher level caches 
be a superset of those of the lower level caches so that the 
higher level caches can shield the lower level caches from I/O 
and cache coherence interference. Otherwise some of the gain 
realized by the multilevel cache hierarchy would be lost by the 
unnecessary blind checks and invalidations percolated to lower 
Ievel of the hierarchy. The mechanism for imposing this kind of 
inclusion without degradation in the performance is, nonethe- 
less, not trivial. In [15], a weak form of inclusion is imposed 
through “blind” invalidations of the lower level caches. In [16], 
the inclusion property of the direct-mapped organization is con- 
sidered l. A more comprehensive mechanism was given in [J], 
where a replacement algorithm was proposed and necessary and 
sufficient conditions for imposing the inclusion property were 
given and proved for fully associative caches. In this paper we 
extend the results in [3] to more general set-associative cache 
organizations. We also investigate the effect of different block 
sizes on imposing the inclusion property. These results are then 
used to examine the impact of imposing the inclusion property 
on cache coherence control for three different architectures. 

The rest of paper is organized as follows: Section 2 briefly re- 
views previous results on fully associative caches and extends 
them to the case of different block sizes. Section 3 proves 
some constraints on imposing the inclusion property for set- 
associative cache hierarchies. Section 4 examines the impact of 
the inclusion property and cache coherence on three different 
architectures. Conclusions are drawn in section S. 

2 MultiLevel Inclusion(ML1) Properties 
for Fully Associative Caches 

We shall use the same memory hierarchy model as in [3]. To 
make this paper self-contained, we briefly state the model and 
the previous results for fully associative caches with the same 
block size. We then extend the results to different block sizes. 

lUnfortunately, the condition for imposing the inclusion property is 
given incorrectly. 
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2.1 MultiIevel cache hierarchy and ML1 

A multilevel cache hierarchy consists of h levels of caches, C,,, 
. . . . C, and forms a tree, i.e., each cache at level C;+l is shared 
by one or more caches at level Ci and a cache at level Ci is a 
direct child of only one cache at level Ci+l (see the examples of 
Figure 7). A processor reference is serviced by the cache closest 
to the processor that contains the data. (We assume that all 
references are for real addresses.) At the same time that cache 
provides information to the caches on the path between itself 
and the processor. This procedure might displace items present 
in those intermediary caches. On the basis of this model, we 
say that: 
“A MultiLevel cache hierarchy has the inclusion property(ML1) 
if the contents of a cache at level i-tl, C;+l, is a superset of 
the contents of all its children caches, Ci, at level i.” This 
definition implies that the write-through policy must be used 
for lower level caches. As we will assume write-back caches in 
this paper, the ML1 is actually a “space” MLI, i.e., space is 
provided for inclusion but a write-back policy is implemented. 

It has been shown [ll] that in a single processor environment 
the ML1 property cannot be maintained with a local LRU al- 
gorithm. Moreover, in a multilevel cache hierarchy for multi- 
processors neither a local LRU nor a global LRU (where all 
references to a Ci cache are percolated to its parent for rear- 
ranging the LRU stack at the Ci+i level) can guarantee the 
MLI property even when the size, or capacity, (i.e., the num- 
ber of data bytes) of every Ci+l cache is strictly greater than 
the summation of the sizes of all its children Ci caches. More 
formally, let mi+l denote the size of a Ci+l cache and let m;(k) 
denote the size of the Xtth Ci cache which is a child of the Ci+l 
cache. Then, 

Theorem 1. Under a global LRU algorithm, the conditions 
that the block size of caches in the hierarchy are the same and 
that m;+l > C,“==, m;(k), for 1 5 i < h, are not sufficient for 

the ML1 property to hold. 

A proof by counter-example is given in [3]. 

A mechanism ensuring the ML1 property is presented in the 
following section. 

2.2 Necessary and sufficient conditions for im- 
posing ML1 

The ML1 property can be imposed by associating with each 
block in a Ci+l cache a counter that holds the number of Ci 
caches in which the block is also resident. This counter has 
logz(N + 1) bits if the Ci+l cache has N children. When a 
block is loaded in a Ci cache from its parent Ci+l cache, the 
counter for the block in the Ci+l cache is incremented by one. 
When a block is replaced in a Cl cache, the counter in the 
parent C2 cache is decremented by one. A block is a candidate 
to be replaced if its associated counter has value 0 (called the 
overflow state). Then the replacement algorithm that is used 
as one of the conditions for the ML1 to hold is: 
Algorithm I (I stands for inclusion) 
(a) Lowest level (C,): Any replacement algorithm will do (e.g., 
local LRU). Notify the parent cache (C,) of the block being 
replaced. 

(b) Other levels : Replace the block which is in the overflow 
state. If there is more than one, choose one. If there is none 
(this won’t happen when MLI is enforced), randomly choose 
one block. Notify the parent cache of the block being replaced. 

When using the above mechanism, the necessary and sufficient 
condition for guaranteeing the ML1 property is that the size of 
each Ci+l cache is not smaller than the sum of the sizes of its 
children Ci caches. More formally: 
Theorem 2. While using the replacement algorithm I the MLI 
property holds iff rn+l 2 C,“=, mi(k). 

The proof.is given in [4]. 

We now extend this result to the case where Ci+l and Ci have 
different block sizes. We assume that all Ci caches have the 
same block size Bi although their capacities can be different. 
We also assume that Bi+l 2 Bi (the opposite would not make 
much sense from an architectural viewpoint), and that the ratio 
Bit1 /Biis a power-of-two integer 2* (this is reasonable since the 
Bi’s are powers of 2). We denote by 4; the number of blocks 
in the jth Ci cache; thus its capacity is mi(j) = pfBi. The 
extension of Theorem 2 to caches with different block sizes is: 

Theorem 3. While using the replacement algorithm I and 
if Bit1 is an integral power of two multiple of Bi, the MLI 
property holds iff mi+l 2 C~“=, mi(k) x w. 

Proof: 
Let p be the number of blocks in Ci.+1 and let q = cg,qf 
be the total number of blocks in its children Ci caches. The 
inequality in the theorem statement can be restated as: 

PBiti 2 QBiBi+l/Bi 

orplq 

Let us denote the blocks in theC;+l cache by J~~~,,.Z~+,, . ...,!&;,. 
Each block LFtl of size Bi+1 consists of 2* sub-blocks of size 
Bi , say L$ll, Li”;i, . . . . L;yj:‘. 

We prove by contradiction that it is necessary that p 1 q. 
Assume that p < q and that all caches are empty. Consider the 
sequence of references to the first bytes of memory addresses 
0, Bi+, , 2B;+l ,..., (p - l)Bi+l . The corresponding distinct 
blocks of size BitI will be loaded in Ci+l and the corresponding 
distinct (sub)blocks of size B; will be loaded in the Bi caches. 
Let the next reference be to memory address pBi+l . There is 
no room in Ci+l for the block starting at that address while 
we have empty slots in the Ci caches which can receive the 
corresponding sub-block. Since there is no block in overflow 
state, the ML1 property as defined previously cannot hold and 
hence we must have p 2 q. 

The sufficient part of the theorem can be proved easily. Since 
p 1 q, we have a one-to-one mapping from a block in Ci to a 
blockin C+l and we are reduced to the case of Theorem 2. q 

3 Multilevel Inclusion Properties for Set 
Associative Caches 

In Section 2, we stated the necessary and sufficient conditions 
to impose ML1 in fully associative caches. We now treat the 
more realistic, and slightly more complex, case of set associative 
caches. Let us denote as: 
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Tag Set Number Address in block 

Figure 1: Cache addressing format 

Size(i), the capacity, 

Bi, the block size, 

S;, the number of sets, 

Ai, the set associativity 

of a Ci cache. We restrict ourselves to the most commonly used 
set mapping; in this case the various fields of an address follow 

the scheme of Figure 1 and we have: 

Size(i) = AiBiSi 

As before we assume that Bi 5 Bi+l and that Bi+l / Bi is 

an integer 2”. Note that the degree of associativity of a fully 
associative cache is the number of blocks in the cache. 

In Theorems 4 and 5 we treat the uniprocessor case. This is 
extended in Theorem 7 for multiprocessor architectures. 

Theorem 4 considers the rather improbable case where the 
number of sets in the C; cache is less than 25. A possible 
interpretation for this is to consider that Ci is a very small 
on-chip fully-associative translation look-aside buffer(T3) and 
that C;+r is a back-up translation buffer with several entries 

(per block size Bi+l ) being loaded at once. For example, one 
could have 4 entries in the on-chip TB (Si = 1, Bi = 1, A; = 4) 
backed up by a TB with Bi+l = 8. Theorem 4 states the 
conditions that must be imposed on Ai+l in order for ML1 to 

hold. 

Theorem 4. 

If Si< w , the ML1 holds under replacement algorithm I iff 
Ai+l> AiX Si. 
Proof: 

Ai+l> Ai x Si implies that each set of a Ci+r cache alone al- 
ready satisfies the condition of Theorem 3. The sufficient con- 
dition is readily proved. 

Let us refer to Figure 2 for proving the necessary condition. 
From the mapping, we see that, in the worst case, Si sets of 
C; can all map to the same set of Ci+r . Since there are Ai 
blocks in a C; set, there is a total of SiXAi blocks that can be 
mapped into the same set. If the blocks are far apart * and 

do not belong to a common Ci+r block, (an example of two far 
apart blocks is shown in Figure 2b) then the ML1 cannot hold 
unless Ai+ AiX 5’;. Cl 

From now on, we assume Si> Bi+l/Bi. 

Lemma 1. 
If ML1 holds then Ai+* 2 A;x v. 
Proof: 

We use Figure 3 to aid in the proof. We see that there is a total 
of 2’ sets which can be mapped to the same Ci+r set. This 

*It is reasonable to assume that the number of tag bits are large enough 
to make this “far-apart” possible 

I 
Tag Set no. Addr. in block Ci+l 

Tag 
[a) 

Set no. Addr. in bk. C; 

oooooooooxxx 

1 00000001xxx 

(b) 

Figure 2: the case when S; < w (a) and an example of 
two far apart Ci blocks, which ma; to the same Ci+r set but 
different Ci+r blocks (b). 

1 Tag 1 

Tag 

Set no. 1 Addr. in bk 1 ci+l 

1-y 

Set no. Addr. in bk ci 

Figure 3: Situation for Lemma 1 

I Tag Set no. Addr. in bk 
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Tag I Set no. Addr. in bk 

Figure 4: Situation for Lemma z 

Ci+l 

Ci 

Set no. Addr. in bk 

Tag YYYYYYYYYY XxXx 

‘7’ 

I Tag YYYYYYY xx 

c2 

Cl 

Figure 5: Example 1 

implies that there are Aix2” Ci blocks that can be mapped 
into the same Ci+r set. Again, as we stated in the proof of 
theorem 4, these blocks can be far apart and may not belong 
t0 a common Ci*1 

Ai+ AiX*. 
block. Thus, the ML1 cannot hold unless 

El 

Lemma 2. 

If ML1 holds then A;+12 AiX&. 
Proof: 

Case 1: * 2 -&: true from Lemma 1. 

Case 2:9 < &-. 

This case is depicted in Figure 4. Again we see that there is 
a total of 2’+* Ci sets which can be mapped to the same Ci+r 
set, where Y+= is &. This means that there are AiX2’+’ Ci 
blocks which can be mapped into the same Ci+l set. As stated 
above, these blocks can be far apart and may not belong to a 
common C;+r block. Thus the ML1 cannot hold unless Ai+l> 

-4X&- 0 

We show here two examples, one for each of the above lemmas, 
to clarify further the above necessary conditions. 
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Example 1 (cf. Figure 5) 
Cl: Size(l) = 512, Br = 4, Sr = 128, A1 = 1 
cz: Size(2) = 32K, Bz = 16 Sz = 1024, A2 = 2 

We cannot have ML1 since A2 < AlBz/BI = 4. For example 
Cl blocks at address 0, lGK+4 and 32K+8 map to set 0, 1, and 
2 in Cl and to the same set (set 0) in Cs. The latter needs to 
be at least 4-way set associative. 

Example 2 (cf. Figure 6) 
c-1: Size(l) = 1024, Br = 4, Sr = 256, A1 = 1 
cz: Size(P) = 2048, B2 = 16, S2 = 32, AZ = 4 

We cannot have ML1 since A2 < AISlI.92 = 8 although AZ = 

AI&/&. For example, Cr blocks at address 0,512,1028, 1540 

and 2056 map to set 0, 128,1, 129 and 2 in Cr and to the same 
set (set 0) in C2. The latter needs to be at least 8-way set 
associative. 

In general, the capacity of the second level cache will be much 
larger than the capacity of the first level cache and therefore 
the number of sets S;+r will be greater than Si. Therefore the 
situation arising in Lemma 1 will be the most common. 

Theorem 5. 
The ML1 holds under replacement algorithm I iff Ai+l LAiXKp 
where K is max(%, -$). 
Proof: 
The “only if’ part is proved directly from Lemmas 1 and 2. 
We prove the “if part by considering two cases. 

Case 1: * 1 &. 
Suppose the ML1 property does not hold; then there must be 
a block a which resides in Ci but not in Ci+r . According to 
the set mapping as shown in Figure 3, block a is mapped to 
set b of C;+r where b = [a/2”]. From this mapping, we know 
there are at most 2’~ A; blocks in C; , including block a, that 
can be mapped to the C;+r set b. Now the proof is reduced to 
a fully associative cache case, with set b of C;+r corresponding 
to 2’~ Ai Ci blocks. As the replacement algorithm I is used 
and Ai+*> Ai x w, we know from Theorem 3 that block a 
can a1wal.s be in C,:+r . This contradicts the assumption that a 
cannot be in C;+r . Thus, the ML1 property holds in this case. 

Case 2:y < -$-. 
Again suppose Iv??1 does not hold; then there must be a block a 
that is in Ci but not in Ci+r From Figure 4, we see there are at 
most 2SfZ~ Ai blocks including block a which are in Ci and are 
mapped to the same set b in Ci+r , where b = mod( [a/2”], 29). 

Since Ai+l> AiX &= AiX G = A, x “‘f’, set b has at L 
least as many C;+r blocks as the total coiresponding C; blocks. 
Again, set b itself can be treated as a fully associative cache 
and our previous result of theorem 3 shows that block a can 
always exist in Ci+r This is a contradiction; i.e., the ML1 
property holds. n 

For purpose of completion, we state without proof the following 
theorem for the impractical case when Bi+l< Bi. 

Theorem 6. 
If Bi+r< Bi then ML1 holds under replacement algorithm I iff 
Size(C;+r ) 2 Size(C; ) and A;+l> Ai. 

Set no. Addr. in block 

Tag YYYYYXXXX 

l--p I-l s 

Tag YYYYYYYYXX 

c2 

Cl 

Figure 6: Example 2. 

For multiprocessors where a Ci+r cache is shared by a number 
Cmax of Ci caches, the above results can be easily generalized 
if we make the practical assumption that all caches on the same 
level are identical. They can be viewed as a single cache with a 
set associativity which is the summation of the set associativ- 
ities of all caches. We include here the multiprocessor version 
of Theorem 5. Its proof is a straightforward extension of the 
proof of Theorem 5. 

Theorem 7 
The ML1 holds under replacement algorithm I iff 
A;+.12 C$~~mosAi(k)XK, where li is max(v, &). 

As a final example that we will see later consider the organiza- 
tion of a level-two cache Cz of capacity 256K bytes that is to 
be shared by Cr caches of capacity 16K, direct mapped(A=l), 
and block size Br=16. If we have Bz=Br=16, then we can have 
16 Cr caches sharing Cz as long as Cz is 16-way set associative. 
If we have &=4Br=64 and do not want to change Cz’s set 
associativity, then we must restrict the sharing to 4 Cr caches. 
Finally, if we want all 16 Cr caches to share Cz with 82=4&, 
and keep MLI, then C2 must have a 64-way set associativity. 
It is necessary to look at alternative ways of imposing MLI(cf. 
Section 4.3). 

In summary, in this section we have presented several condi- 
tions for having the inclusion property for set-associative cache 
hierarchies in which different blocks sizes are allowed at dif- 
ferent levels. In practice we will have Size(i + 1) >> Site(i) 
(and hence Si+r> Si) and Bi+r> B;. In this context, Theorem 
7 states the most important result of this section. namelv: In 
order to realize the inclusion property in a cache hierarchy, the 
degree of set associativity of a parent cache must be at least 
as large as the product of the number of its children, their set 
associativity, and the ratio of block sizes. 

4 Impact of ML1 and Cache Coherence 
on System Structure 

The emergence of cache hierarchies and means to manage them 
in a reasonable manner have motivated the results of the pre- 
vious two sections. Among the organizations that have been 
proposed, the three that we describe now seem to have at- 
tracted the most interest. Because all three limit themselves to 
two levels, we shall do the same here. 

The first organization is simply to extend a single level cache to 
a two-level one. Many examples with on-chip read-only caches 
follow this paradigm. A more attractive architecture is to con- 
sider a shared-memory multiprocessor where each processor has 
a two-level cache hierarchy: A full-fledged small and fast in- 
struction and data cache Cr backed up by a large slower second- 
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Figure 7: Three multiprocessor structures 

level cache Cz . A busing structure connecting the second-level 
caches leads to the multiprocessor shown on Figure 7a. 

The second organization, exemplified by the Facom architec- 
ture [9] for the uniprocessor case, is what we call a multiport 

cache hierarchy. It consists of a second-level cache C’s shared 
directly by a limited number (say at most 4) of first level caches 
C, as shown in Figure 7b. Of course, in principle this architec- 
ture can be extended to one where there would be several C2 
caches. Cache coherence between the Cr caches is performed 
using a directory approach [5, 31. 

The third organization, or bus-based hierarchy, consists of a 
very large second-level cache Cz , “an order of magnitude larger 
than the sum of all the next lower caches” [15], being shared by 
up to two dozen first-level caches Cr , Cache coherence between 
Cr caches is achieved through some bus-based protocol [2, 141. 

An extension of this architecture would consider a hierarchy of 
buses, i.e., the system would contain several clusters of second- 
level cache, first-level caches and associated processors with 
the clusters being connected by a common bus as shown in 
Figure 7c. 

It is the consensus that all these existing or proposed architec- 
tures are practical only if some inclusion property is imposed 
(note that the hierarchy implemented on the Facom does not 
follow this rule and therefore it suffers from severe inefficien- 
cies). Although we only have seen proposals where the block 
sizes at the two levels are the same, we show that this assump- 
tion is not always warranted if we wish to have cost-effective 
hierarchies. By the same token, the constraints to attain inclu- 
sion imposed in the previous section might have to be relaxed. 
We explore these various alternatives in the context of the three 
organizations of Figure 7. 

4.1 Extension of a single level cache 

The motivations for the replacement of a single level cache by a 
two-level hierarchy have been given in our introductory section. 
Here we examine the contradictory impacts of parameters such 
as cache sizes, block sizes, associativity and inclusion properties 
when the goals of the various comnonents of the hierarchv a.re 
taken into account. 

Consider first the benefits of a cache hierarchy. Using a trace- 
driven simulation (VAX traces of a mix of system and appli- 
cation programs), Short [13] reports a 15-20% decrease in ex- 
ecution time when backing up a 16K Cr by a 256K Cz . In 
his simulation for a uniprocessor, he assumes the cycle time for 
the second level and the memory access time to be respectively 
4 and 15 times that of the first level. The same block size is 
assumed for Cr and C2 . More dramatic improvements are re- 
ported when the memory access time is 30 or GO times that of 

Cl . 

Clearly, this increase in performance is not achieved without a 
cost - that of the Ca cache. A better comparison, yielding ap- 
proximately equal cost in a multiprocessor environment, would 
be to compare the above structure with a 32K Cl that would 
have to include a “fast” snoopy-cache mechanism. In this case, 
the performance improvement, of the order of 6-S% [13], is still 
quite significant. Note that in the two-level hierarchy following 
the present organization, the snoopy mechanism needs to be 
implemented solely at the second level. Therefore, it does not 
have to be as optimized as if there were a single cache because 

the first level Cl , and hence the processor, will most often be 
shielded by the C’z cache from cache coherence and I/O effects. 
Coherence at the first level is very easy to obtain as shown 
below. 

The improvements in performance require Cr to be as fast as 
possible. This fact argues for a small, direct-mapped cache and 
hence a rather small block size B1. For instance, a 16K cache 
with a 16 bytes block size could have a 40ns. cycle time match- 
ing a fast, but not superfast, processor. Consider now the 256K 
Ca backing up this 16K Cr cache. If we keep the same block 
size and allow a four-way set associativity, we would have a 
tag memory of (256K/16) tags of 19 bits (16 for address, one 
each for valid, clean/dirty, and inclusion) plus additional bits 

for protection and replacement algorithm purposes, i.e., of the 
order of 40 to 48Kbytes with most of it having to be dupli- 
cated for snooping purposes in a multiprocessor environment. 
Although memory is cheap, this cache is fast memory and hence 
not inexpensive. An alternative is to quadruple the block size 

in C2 , since this change is still compatible with the previously 
stated conditions for inclusion, and use a sector (sub-block) or- 
ganization [12]. Now the number of tags has decreased by a 
factor of 4 but the length of the tag is increased by 9 bits (3 
bits for each of the 4 sub-blocks instead of 3 bits for the whole 
block) for validity, clean/dirty and inclusion states. Overall the 
tag memory size has been reduced by well over 50%. 

Speed considerations have led us to a small Cl cache and cost- 
effectiveness points towards a large sector organized Ca cache. 
A simple coherence control at the Cl level and a unified coher- 
ence mechanism between the two levels are two additional ad- 
vantages that can be brought forth by the sector organization. 
Recall that in a sector cache [s], we can distinguish between 
three logical block sizes, namely: 



l The block tag-size imposed by the formula: 

capacity = block tag-size x set associativity x number 
of sets 

l The block coherence-size, i.e., the unit of size for which 
cache coherence is maintained. Naturally, the block tag 

size is a multiple of, or equal to, the coherence-size. 

. The block transfer-size, i.e., the amount of data fetched 
on a miss (of course the tag-size is a multiple of, or equal 
to, the transfer-size). 

It is apparent that we should choose Br as the coherence-size; 
having a coherence-size larger than B1 does not make sense 
and having it smaller complicates the logic in Cr . Then the 
transfer-size will be a multiple of, or equal to, Br. The first 
level cache misses, replacements, and requests for permissions 
to write clean blocks are directed to the second-level cache. The 
coherence problem between Cz caches is solved on a sub-block 
(of size Br) basis. It is only when a sub-block in Cz has its 
inclusion bit set and has to be invalidated or written-back that 
the corresponding Cr needs to be disrupted. The only action 

at the Cr level is either to purge (write-back) or invalidate a 
given block. This can be implemented very simply since it 

requires only one line to widen the path to transmit the order 
and to provide a “cycle stealing” mechanism in the Cr cache 
controller. 

In summary, this organization is quite attractive. It combines 

a fast access to a small cache, a simple coherence mechanism, 
and the ability to have an economical large second-level cache. 

Its main weakness is that Cz is completely allocated to a single 
processor. The other two organizations that we discuss now 

allow the sharing of Cz but this raises new problems. 

4.2 Multiport second-level cache 

In the multiport two-level hierarchy, a large Cz is shared by n 
Cr caches. There are at least three reasons why this it must be 
small. 

1. The multiport organization requires arbitration of access 
from the Ct caches to the Cs The logic to do so is 
expensive and severely limits the value of n [7]. 

2. The cache coherence mechanism bet,ween the first level 

caches must be implemented according to a directory 
bas?d scheme since the Cr caches do not share a com- 
mon bus. The amount of tag memory to do this is not 
trivial: It requires R. + 1 bits in C, per coherence-size 
block if we want to avoid broadcasts [5] and 2 bits only 
[I] if we trade tag memory for slightly more complex pro- 
tocols. In addition, the (hardware) coherence controller 
is not that simple. 

3. 12 has a multiplicative effect with respect to the inclusion 
properties (recall Theorem 7). Thus the set associativity 
grows proportionally to n and this will limit very quickly 
the block tag-size since the set associativity is also pro- 

portional to &/Br. 

In order to illustrate these points, we assume the same param- 
eters for the first-level caches as in the previous organization 
and the same total capacity for Cz . That is, the size of Cz is 
256 Kbytes. Each Cl is 16 Kbytes, direct mapped (Al = I), 
has a 16 byte block size (Br = 16), and therefore has 1024 
sets (Sr = 1024). From Theorem 7, we know that the set- 
associativity of Cz must be at least AZ 2 nA1. If we want as 

large a block tag-size as before (Bz = 64), then we must have 
AZ 2 4nA1. This gives a practical upperbound for n to be 4 
resulting in a 16-way set associative Cz . 

This last figure clearly restricts the range of systems for which 
this organization can be practical to powerful mainframes with 
very tightly-coupled multiprocessing. If we want to increase the 
number of processors, we need to replicate the cache hierarchy 
and have some coherence mechanism between the second-level 
caches. This extension will add complexity to the level two 

coherence controller since the protocols will have to take into 
account not only level one coherence orders but also those com- 
ing from level two. Thus, the circuitry needed at the second 
level (extensive tagging, coherence mechanism for the two lev- 
els, very high set-associativity, multiport arbitration) becomes 

formidable. 

This organization appears to have a limited appeal. The next 
organization will allow more extensive parallelism and a shared 
CZ cache. However, the price to pay will be weaker inclusion 

properties. 

4.3 Bus-based hierarchy 

The bus-based hierarchy, or cluster, organization (cf. Figure 
7c) can be seen as an extension of the previous two organi- 
zations. Like the first organization, the second level caches 
are bus-connected (inter-cluster bus); like the second one, each 
level two cache is shared by some level one caches and associ- 
ated processors to form a cluster. The main difference, how- 
ever, is the fact that we want a medium number, say 16 to 24, 
of Ci caches sharing a Cz . This requires that the Ci caches 
themselves be connected by a shared-bus (intra-cluster bus). 
The flexibility to add Ci caches in a cluster, or to augment the 
number of clusters, is not achieved without some overhead. In 
particular: 

. As a relatively large number of Ci caches are connected 
through the intra-cluster bus, a full-fledged (shared-bus) 
cache coherence protocol needs to be implemented at that 

level. The complexity of the implementation tends to 
slow down the cache [lo] and impact on the processor 

cycle time. 

l Imposing the inclusion property with conditions as de- 

fined in Section 3 becomes impractical since, even at equal 
block sizes, the set associativity of Cz becomes too large. 
Since the inclusion property is still needed so that inter- 
cluster coherence can remain manageable, we must find 
an alternative to algorithm I. 

A first solution to this problem, assuming equal block sizes at 
the two levels, is proposed by Wilson [15]. In his scheme, each 
time a block in a cache Cz is to be replaced, an invalidation sig- 
nal is sent on its intra-cluster bus (Wilson does not elaborate on 



clean/dirty blocks and invalidate vs. purge in case of a write- 
back policy at the Cr level). This policy ClearlY will enforce 
inclusion but generates unnecessary traffic on the intra-cluster 
bus when there is no copy of that block in any of the Cr caches. 
Similarly, and maybe more importantly from the performance 
viewpoint, invalidations of this type might be percolated from 
the second to the first level to ensure the inter-cluster coher- 
ence. 

In order to prevent these “blind” invalidations, we can associate 
an inclusion bit (III) with each block in Cz . IB is on if there is 
at least one Cr cache which has a valid copy of the block. IB is 
set on any miss to a Cr served by Cz (this includes both hit and 
miss in Cp ). It is reset (IB off) on a write-back from a Cr that 
either invalidates all other intra-cluster copies or that is known 
to come from the only Cr with a valid copy (this depends on 
the intra-cluster protocol). 

Setting the clean/dirty (CD) bit in Cz , where the clean/dirty 
property is with respect to other clusters and main memory, is 
not trivial. CD is set (clean) on a read miss served by Cs and 
reset (dirty) on a write miss served by Cz . Furthermore, Cz 
needs to listen to the transactions on the intra-cluster bus to 
reset CD on any transaction that will modify the clean status 
of the block in any of the Cr caches (this again depends on the 
level one protocol). 

With the help of these IB and CD bits, we can now extend any 
of the MOESI protocols [14] for inter-cluster coherence with 
as little interference at the first level as possible. We sketch 
here how this could be done. In any MOESI protocol, we need 
at least three states: Invalid, Clean and Dirty (extra states 
are almost always included for improving performance). We 
now have a corresponding minimum of 5 states for a Cz block, 
namely: 

1. Invalid. 

2. CleanNotI: Clean in Cz only (IB off, CD on). 

3. CleanI: Clean in Cz and possibly some Cr (IB on, CD 
on). 

4. DirtyNotI: Dirty wrt main memory and other clusters but 
up to date (i.e., no valid copy in the Cr ‘s) (IB off, CD 

off) 

5. DirtyI: Dirty and not up to date (IB on, CD off). 

The inter-cluster references are then treated as follows (from 
the intra-cluster viewpoint). 

If the block in Cz is in the Invalid, CleanNotI, or DirtyNotI, 
there is no action to be taken at the intra-cluster level. 

If the block in Cz is in the Clean1 state, no action is to 
be taken on a read transaction. A write or invalidate has 
to be percolated (as an invalidation) to level one and IB 
is reset. This change in IB is required since, for some 
inter-cluster protocols, the block in Cz can still be valid. 

If the block in Cz is in *he Dirty1 state, a purge will be 
sent to level one. The CD bit will be set and, depending 
on the type of inter-cluster transaction and the choice in 
implementation, the state of the block in Ca will become 
either Invalid, CleanNotI or CleanI. 

Finally, if a block in Cz is to be replaced, then only when the 
IB bit is set will we have to send a purge or an invalidation on 
its intra-cluster bus. 

This bus-based organization is certainly more flexible than the 
multiport cache one. When compared with the first organiza- 
tion it presents the advantage of the sharing of a Cz cache and 
from this viewpoint is more economical. The drawback is the 
need for inclusion control. Performance studies to analyze if 
the first organization or if the bus-based (with or without the 
IB/CD control) is more cost-effective are in progress. 

5 Conclusion 

The multilevel cache hierarchy is a promising approach to the 
design of large caches. To ensure simple cache coherence proto- 
cols for systems with a multilevel cache hierarchy, the inclusion 
property should be imposed. In this paper, we have presented 
several conditions for imposing the inclusion property for fully- 
and set-associative cache hierarchies which allow different block 
sizes on different levels. Among our results, the most impor- 
tant one shows that to realize the inclusion property in a cache 
hierarchy, the degree of set associativity of a parent cache must 
be at least as large as the product of the number of its children, 
their set associativity, and the ratio of block sizes. 

We have exa.mined several organizations to study the feasibility 
of applying these results to ensure an efficient cache coherence 
control. We have found tha.t it is feasible to satisfy the condi- 
tions in the organization which extends a single level cache in 
the shared-bus organization to a two-level cache. For a multi- 
port second-level cache organization, the inclusion constraints 
seem to be too strict and this seriously limits the number of 
first-level caches. As for the bus-based hierarchy, satisfying the 
conditions as stated above is not practical. Instead, we have to 
resort to broadcast invalidations. We have presented a scheme 
that reduces the number of broadcasts to only those that are 
necessary. 

Clearly some analytical and trace driven performance studies 
are in order to assess the usefulness and the system impacts of a 
multilevel cache hierarchy. We are in the process of performing 
such studies. As a final remark, it is interesting to note that our 
efforts in formally stating the conditions for multilevel inclusion 
can also be used in reducing the traces for trace-driven cache 
simulations. 
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