
A Comparison of Receiver-Initiated and Sender-Initiated
Adaptive Load Sharing

(Extended Abstract)

Derek L. Eager

Department of Computational Science
University of Saskatchewan

Edward D, Lazowska and John Zahorjan

Department of Computer Science
University of Washington

One goal of locally distributed systems is to facilitate resource
sharing. Most current locally distributed systems, however, share
primarily data, data storage devices, and output devices; there is
little sharing of computational resourees. Load shoring is the process
of sharing computational resources by transparently distributing the
system workload. System performance can be improved by
transferring work from nodes that are heavily loaded to nodes that
are lightly loaded.

Load sharing policies may be either static or adaptive. Static
policies use only information about the average behavior of the
system; transfer decisions are independent of the actual current
system state. Static policies may be either deterministic (e.g.,
“transfer all compilations originating at node A to server B”) or
probabilistic (e.g., “transfer half of the compilations originating at
node A to server B, and process the other half locally”).

Numerous static load sharing policies have been proposed. Early
studies considered deterministic rules [Stone 1977, 1978; Bokhari
19791. More recently, Tantawi and Towsley [1985] have developed a
technique to find optimal probabilistic rules.

The principal advantage of static policies is their simplicity:
there is no need to maintain and process system state information.
Adaptive policies, by contrast, are more complex, since they employ
information on the current system state in making transfer decisions.
This information makes possible significantly greater performance
benefits than can be achieved under static policies. This potential
was clearly indicated by Livny and Melman [1982], who showed that
in a network of homogeneous, autonomous nodes there is a high
probability that at least one node is idle while tasks are queued at
some other node, over a wide range of network sizes and average
node utilizations.

This materi$ is based upoo work supported by the National Science Foundation
under Grants MCS-8004111, MCS-8302383, and DCR-8352098, and by the Natural
Sciencea and Engineering Research Council of Canada. This work ylaa conducted
while Laaowska was on leave at Digital Equipment Corporation’s Syslems Research
Center.

Authors’ Addresses: Derek L. Eager, Department of Computational Science, Univer-
sity 01 Saskatchewan, Saskatcon, Canada, S7N OWO; Edward D. Lszowska and John
Zahorjan, Department of Computer Science FR-36, University of Washington, Seattle,
WA 96105.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

In previous work [Eager, Lasowska & Zahorjan 19841 we
considered the appropriate levet of complexity for adaptive load
sharing policies. (For example, how much system state information
should be collected, and how should it be used in making transfer
decisions?) Rather than advocating specific policies, we considered
fairly abstract strategies exhibiting various levels of complexity. We
demonstrated that the potential of adaptive load sharing can in fact
be realized by quite simple strategies that use only small amounts of
system state information. This result is important because of a
number of practical concerns regarding complex policies: the effect
of the overhead required to administer a complex policy, the effect of
the inevitable inaccuracies in detailed information about system state
and workload characteristics, and the potential for instability. (We
consciously use the phrase “load sharing” rather than the more
common “load balancing” to highlight the fact that load balancing,
with its implication of attempting to equalize queue lengths system-
wide, is not an appropriate objective.)

Adaptive load sharing policies can employ either centralized or
distributed control. Distributed control strategies can be of two basic
types (although intermediate strategies also are conceivable):
sender-iniliated (in which congested nodes search for lightly loaded
nodes to which work may be transferred), and receiver-initiated (in
which lightly loaded nodes search for congested nodes from which
work may be transferred). Our earlier paper considered distributed,
sender-initiated policies - a sufficiently rich class to allow us to
answer the fundamental questions of policy complexity that we were
addressing. In the course of understanding the reasons for the
degradation of these policies at high system loads, we were led to
consider receiver-initiated policies ss a possible alternative. The
comparison of receiver-initiated and sender-initiated adaptive load
sharing is the purpose of the present paper.

There have been several experimental studies, using prototypes
and simulation models, of specific (typically fairly complex) adaptive
load sharing policies [Bryant & Finkel 1981; Livny & Melman 1982;
Kreuger & Finkel 1984; Barak & Shiloh 19841. Both sender-initiated
policies and receiver-initiated policies have been considered.
However, there has not previously been a rigorous comparison of
these two strategies. Such a comparison is made difficult by the
problem of choosing appropriate representative policies of each type,
and by the potentially quite different costs incurred in effecting
transfers. (Receiver-initiated policies typically will require the
transfer of executing tasks, which incurs substantial costs in most
systems [Powell & Miller 19831. Sender-initiated policies naturally
avoid such costly transfers, since tasks can be transferred upon
arrival, prior to beginning execution.)

Our present paper is similar to our previous work in that our
purpose, rather than to advocate specific policies, is to address a
fundamental question concerning policies in general: How should
system state information be collected and load sharing actions
initiated - by potential receivers of work, or by potential senders of
work? In studying this question we consider a set of abstract policies
that represent only the essential aspects of receiver-initiated and

0 1985 ACM 0-89791-169-5/85Nx)7~iXlOl $99.75

sender-initiated load sharing strategies. These policies are
investigated using simple analytic models. Our objective is not to
determine the absolute performance of particular load sharing
policies, but rather to gain intuition regarding the relative merits of
the different approaches under consideration.

We represent locally distributed systems as collections of identical
nodes, each consisting of a single processor. The nodes are connected
by a local area network (e.g., an Ethernet). All nodes are subjected
to the same average arrival rate of tasks, which are of a single type.

In contrast to most previous papers on load sharing, we represent
the cost of task transfer as a processor cost rather than as a
communication network cost. It is clear from measurement and
analysis [Lazowska et al. 19841 that the processor costs of packaging
data for transmission and unpackaging it upon reception far
outweigh the communication network costs of transmitting the data.

We study three abstract load sharing policies, comparing their
performance to each other and to that of a system in which there is
no load sharing. The Sender policy is used as a representative of
sender-initiated load sharing strategies. The Receiver and
Reservation policies are used as representatives of receiver-initiated
load sharing strategies; unlike the Receiver policy, the Reservation
policy will transfer only newly arriving tasks. In a bit more detail:

Sender

In our earlier work concerning the appropriate level of complexity
for adaptive load sharing schemes, we identified two sub-policies
of sender-initiated strategies. The trona/er policy determines
whether a task should be processed locally or remotely. The
location policy determines to which node a task selected for
transfer should be sent.

In that previous study, we considered thrcahold transfer policies,
in which each node uses only local state information. An attempt
is made to transfer a task originating at a node if and only if the
number of tasks already in service or waiting for service (the node
gueuc length) is greater than or equal to some threshold T

We considered various location policies spanning a range of
complexity. We found that the use of a complex location policy
yields only slight improvement over the use of a simple location
policy that, like the transfer policy, uses threshold information.
In this threshold location policy, a node is selected at random and
probed to determine whether the transfer of a task to that node
would place the node above the threshold 7’. If not, then the
task is transferred. If so, then another node is selected at random
and probed in the same manner. This continues until either a
suitable destination node is found, or the number of probes
reaches a static probe limit, L, . In the latter case, the originating
node must process the task. (The use of probing with a fixed
limit, rather than broadcast, ensures that the cost of executing
the load sharing policy will not be prohibitive even in large
networks. The performance of this policy was found to be
surprisingly insensitive to the choice of probe limit: the
performance with a small probe limit, e.g., 3 or 5, is nearly as
good as the performance with a large probe limit, e.g., 20.)

The sender-initiated policy with a threshold transfer policy and a
threshold location policy was found to yield performance not far
from optimal, particularly at light to moderate system loads. For
this reason, and because of its simplicity, we choose this policy to
serve as the representative of sender-initiated strategies for the
comparison that is the subject of the present paper, and term it
here the Sender policy.

R&XiVCl

To facilitate comparison between sender-initiated strategies and
receiver-initiated strategies, a representative policy of the latter
class should be as similar as possible to the Sender policy. In
particular, it should utilize threshold-type state information, and
have a bound L, on the number of remote nodes whose state can
be examined when making a task transfer decision.

In the Receiver policy, a node attempts to replace a task that has
completed processing if there are less than T tasks remaining at

the node. A remote node is selected at random and probed to
determine whether the transfer of a task from that node would
place its queue length below the threshold value 2’. If not, and if
the node is not already in the process of transferring a task, a
task is transferred to the node initiating the probe. Otherwise,
another node is selected at random and probed in the same
manner. This continues until either a node is found from which a
task can be obtained, or the number of probes reaches a static
probe limit, L,. In the latter case, the node must wait until
another tssk departs before possibly attempting again to initiate a
transfer. (This is completely analogous to the operation of the
Sender policy, in which a node that fails to find a suitable
destination to which to transfer a task must wait until another
task arrives before attempting again to initiate a transfer.) The
Receiver policy with T=l has been studied using a simulation
model by Livny and Melman [1982], who term it the “poll when
idle algorithm”.

Reservation

The Reservation policy, like the Sender policy but in contrast to
the Receiver policy, will only transfer newly arriving tasks. This
may be advantageous in multiprogramming systems in which
nodes attempt to give each of the tasks present some share of the
total available processing power. If the Receiver policy is used in
such a system, almost all task transfers will involve executing
tasks, and may be substantially more costly than transfers of
non-executing tasks.

In the Reservation policy, as in the Receiver policy, a node
attempts to replace a task that has completed processing if there
are less than 2’ tasks remaining at the node. A remote node is
selected at random and probed to determine whether the transfer
of the next task to originate at that node would place its queue
length below the threshold value 2”. If not, and if no other
“reservation” is pending for this node, then this next arrival is
“reserved” by the probing node; it is transferred upon arrival if
no other tasks have arrived at the probing node by that time. If
the reservation attempt is not successful, another node is selected
at random and probed in the same manner. This continues until
either a node is found at which the next arrival can be reserved,
or the number of probes reaches a static probe limit, L, In the
latter case, the node must wait until another task departs before
possibly attempting again to reserve a task.

Our evaluation of this policy is optimistic. (Even this optimistic
evaluation predicts unsatisfactory performance.) At the time a
reservation is attempted, we assume that the probed node can
“see into the future” to the arrival time of the (potentially)
reserved task. The reservation is made only if the probed node
will be above threshold at that time. Also, even when a
reservation request is successful, the probed node considers this
next arrival as ineligible for other reservation requests only if it
will actually be transferred to the node holding the reservation.
Finally, we assume that the probability that a task will be
processed locally rather than transferred, given that it arrives
when the node queue length is at or over threshold, is
independent of the prior history of task arrivals and departures.
In fact, this probability is higher for tasks with shorter
interarrival times.

Many of the results of our study are illustrated in the
accompanying figure. While the figure illustrates specific choices of
parameter values, the results are quite robust with respect to these
choices; a substantial part of the full paper is devoted to
demonstrating this robustness. The results inelude:

l Both receiver-initiated and sender-initiated policies offer
substantial performance advantages over the situation in which no
load sharing is attempted (shown as M/M/l in the figure).

l Sender-initiated policies are preferable to receiver-initiated
policies at light to moderate system loads.

. Receiver-initiated policies are preferable at high system loads, but
only if the costs of task transfer under the two strategies are
comparable.

2

'0.0 0.1 0.2 8.3 0.4 0.6 0.6 0.7 0.0 0.9 1.0
system lord

S (task service time) = 1 C (cost of task transfer) = 0.1 L, (probe limit) = 3

Principal Performance Comparkon: Response Time va, Load p

. If the cost of task transfers under receiver-initiated policies is
significantly greater than under sender-initiated policies (for
example, because executing tasks must be transferred), then
sender-initiated policies provide uniformly better performance.

l Modifying receiver-initiated policies to transfer only newly-arrived
tasks (so as to avoid the cost of transferring executing tasks)
yields unsatisfactory performance.

References

[Barak & Shiloh 19841
A. Barak and A. Shiloh. A Distributed Load Balancing Policy for
a Multicomputer. Department of Computer Science, The Hebrew
University of Jerusalem, 1984.

[Bokhari 19791
S.H. Bokhari. Dual Processor Scheduling with Dynamic
Reassignment. IEEE Tranaacrions on So/tware Engineering SE-
5,4 (July 1979) pp. 341-349.

[Bryant & Finkel 19811
R. Bryant and R.A. Finkel. A Stable Distributed Scheduling
Algorithm. Proe. Pnd International Con/crenee on Distributed
Computing Systems (April 1981), pp. 314-323.

[Eager, Laaowska & Zahorjan 19841
D.L. Eager, E.D. Lazowska and J. Zahorjan. Adaptive Load
Sharing in Homogeneous Distributed Systems. Technical Report
84-10-01, Department of Computer Science, University of
Washington, October 1984. Submitted to IEEE Transactions on
Sojtware Engineering.

ILasowska et al. 19841
E.D. Lazowska, J. Zahorjan, D.R. Cheriton and W. Zwaenepoel.
File Access Performance of Diskless Workstations. Technical
Report 84-0601, Department of Computer Science, University of
Washington, June 1984. To appear in ACM Transactions on
Computer Systems.

[Livny & Melman 19821
M. Livny and M. Melman. Load Balancing in Homogeneous
Broadcast Distributed Systems. Proc. ACM Computer Network
Performance Symposium (April 1982) pp. 47-55.

[Powell & Miller 19831
M.L. Powell and B.P. Miller. Process Migration in DEMOS/MP.
Proc. 0th ACM Symposium on Operating Systems Principles
(October 1983), pp. 119-119.

[Stone 19771
H.S. Stone. Multiprocessor Scheduling with the Aid of Network
Flow Algorithms. IEEE Tranaactiona on Software Engineering
SE-S,1 (January 1977) pp. 85-93.

[Stone 19781
H.S. Stone. Critical Load Factors in Two Processor Distributed
Systems. IEEE Transactions on Software Engineering SE43
(May 1978), pp. 254-258.

(Tantawi & Towsley 19851
A.N. Tantawi and D. Towsley. Optimal Static Load Balancing in
Distributed Computer Systems. JACM X8,2 (April 1985), pp.
445-465.

