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One goal of locally distributed systems is to facilitate resource 
sharing. Most current locally distributed systems, however, share 
primarily data, data storage devices, and output devices; there is 
little sharing of computational resourees. Load shoring is the process 
of sharing computational resources by transparently distributing the 
system workload. System performance can be improved by 
transferring work from nodes that are heavily loaded to nodes that 
are lightly loaded. 

Load sharing policies may be either static or adaptive. Static 
policies use only information about the average behavior of the 
system; transfer decisions are independent of the actual current 
system state. Static policies may be either deterministic (e.g., 
“transfer all compilations originating at node A to server B”) or 
probabilistic (e.g., “transfer half of the compilations originating at 
node A to server B, and process the other half locally”). 

Numerous static load sharing policies have been proposed. Early 
studies considered deterministic rules [Stone 1977, 1978; Bokhari 
19791. More recently, Tantawi and Towsley [1985] have developed a 
technique to find optimal probabilistic rules. 

The principal advantage of static policies is their simplicity: 
there is no need to maintain and process system state information. 
Adaptive policies, by contrast, are more complex, since they employ 
information on the current system state in making transfer decisions. 
This information makes possible significantly greater performance 
benefits than can be achieved under static policies. This potential 
was clearly indicated by Livny and Melman [1982], who showed that 
in a network of homogeneous, autonomous nodes there is a high 
probability that at least one node is idle while tasks are queued at 
some other node, over a wide range of network sizes and average 
node utilizations. 
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In previous work [Eager, Lasowska & Zahorjan 19841 we 
considered the appropriate levet of complexity for adaptive load 
sharing policies. (For example, how much system state information 
should be collected, and how should it be used in making transfer 
decisions?) Rather than advocating specific policies, we considered 
fairly abstract strategies exhibiting various levels of complexity. We 
demonstrated that the potential of adaptive load sharing can in fact 
be realized by quite simple strategies that use only small amounts of 
system state information. This result is important because of a 
number of practical concerns regarding complex policies: the effect 
of the overhead required to administer a complex policy, the effect of 
the inevitable inaccuracies in detailed information about system state 
and workload characteristics, and the potential for instability. (We 
consciously use the phrase “load sharing” rather than the more 
common “load balancing” to highlight the fact that load balancing, 
with its implication of attempting to equalize queue lengths system- 
wide, is not an appropriate objective.) 

Adaptive load sharing policies can employ either centralized or 
distributed control. Distributed control strategies can be of two basic 
types (although intermediate strategies also are conceivable): 
sender-iniliated (in which congested nodes search for lightly loaded 
nodes to which work may be transferred), and receiver-initiated (in 
which lightly loaded nodes search for congested nodes from which 
work may be transferred). Our earlier paper considered distributed, 
sender-initiated policies - a sufficiently rich class to allow us to 
answer the fundamental questions of policy complexity that we were 
addressing. In the course of understanding the reasons for the 
degradation of these policies at high system loads, we were led to 
consider receiver-initiated policies ss a possible alternative. The 
comparison of receiver-initiated and sender-initiated adaptive load 
sharing is the purpose of the present paper. 

There have been several experimental studies, using prototypes 
and simulation models, of specific (typically fairly complex) adaptive 
load sharing policies [Bryant & Finkel 1981; Livny & Melman 1982; 
Kreuger & Finkel 1984; Barak & Shiloh 19841. Both sender-initiated 
policies and receiver-initiated policies have been considered. 
However, there has not previously been a rigorous comparison of 
these two strategies. Such a comparison is made difficult by the 
problem of choosing appropriate representative policies of each type, 
and by the potentially quite different costs incurred in effecting 
transfers. (Receiver-initiated policies typically will require the 
transfer of executing tasks, which incurs substantial costs in most 
systems [Powell & Miller 19831. Sender-initiated policies naturally 
avoid such costly transfers, since tasks can be transferred upon 
arrival, prior to beginning execution.) 

Our present paper is similar to our previous work in that our 
purpose, rather than to advocate specific policies, is to address a 
fundamental question concerning policies in general: How should 
system state information be collected and load sharing actions 
initiated - by potential receivers of work, or by potential senders of 
work? In studying this question we consider a set of abstract policies 
that represent only the essential aspects of receiver-initiated and 
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sender-initiated load sharing strategies. These policies are 
investigated using simple analytic models. Our objective is not to 
determine the absolute performance of particular load sharing 
policies, but rather to gain intuition regarding the relative merits of 
the different approaches under consideration. 

We represent locally distributed systems as collections of identical 
nodes, each consisting of a single processor. The nodes are connected 
by a local area network (e.g., an Ethernet). All nodes are subjected 
to the same average arrival rate of tasks, which are of a single type. 

In contrast to most previous papers on load sharing, we represent 
the cost of task transfer as a processor cost rather than as a 
communication network cost. It is clear from measurement and 
analysis [Lazowska et al. 19841 that the processor costs of packaging 
data for transmission and unpackaging it upon reception far 
outweigh the communication network costs of transmitting the data. 

We study three abstract load sharing policies, comparing their 
performance to each other and to that of a system in which there is 
no load sharing. The Sender policy is used as a representative of 
sender-initiated load sharing strategies. The Receiver and 
Reservation policies are used as representatives of receiver-initiated 
load sharing strategies; unlike the Receiver policy, the Reservation 
policy will transfer only newly arriving tasks. In a bit more detail: 

Sender 

In our earlier work concerning the appropriate level of complexity 
for adaptive load sharing schemes, we identified two sub-policies 
of sender-initiated strategies. The trona/er policy determines 
whether a task should be processed locally or remotely. The 
location policy determines to which node a task selected for 
transfer should be sent. 

In that previous study, we considered thrcahold transfer policies, 
in which each node uses only local state information. An attempt 
is made to transfer a task originating at a node if and only if the 
number of tasks already in service or waiting for service (the node 
gueuc length) is greater than or equal to some threshold T 

We considered various location policies spanning a range of 
complexity. We found that the use of a complex location policy 
yields only slight improvement over the use of a simple location 
policy that, like the transfer policy, uses threshold information. 
In this threshold location policy, a node is selected at random and 
probed to determine whether the transfer of a task to that node 
would place the node above the threshold 7’. If not, then the 
task is transferred. If so, then another node is selected at random 
and probed in the same manner. This continues until either a 
suitable destination node is found, or the number of probes 
reaches a static probe limit, L, . In the latter case, the originating 
node must process the task. (The use of probing with a fixed 
limit, rather than broadcast, ensures that the cost of executing 
the load sharing policy will not be prohibitive even in large 
networks. The performance of this policy was found to be 
surprisingly insensitive to the choice of probe limit: the 
performance with a small probe limit, e.g., 3 or 5, is nearly as 
good as the performance with a large probe limit, e.g., 20.) 

The sender-initiated policy with a threshold transfer policy and a 
threshold location policy was found to yield performance not far 
from optimal, particularly at light to moderate system loads. For 
this reason, and because of its simplicity, we choose this policy to 
serve as the representative of sender-initiated strategies for the 
comparison that is the subject of the present paper, and term it 
here the Sender policy. 

R&XiVCl 

To facilitate comparison between sender-initiated strategies and 
receiver-initiated strategies, a representative policy of the latter 
class should be as similar as possible to the Sender policy. In 
particular, it should utilize threshold-type state information, and 
have a bound L, on the number of remote nodes whose state can 
be examined when making a task transfer decision. 

In the Receiver policy, a node attempts to replace a task that has 
completed processing if there are less than T tasks remaining at 

the node. A remote node is selected at random and probed to 
determine whether the transfer of a task from that node would 
place its queue length below the threshold value 2’. If not, and if 
the node is not already in the process of transferring a task, a 
task is transferred to the node initiating the probe. Otherwise, 
another node is selected at random and probed in the same 
manner. This continues until either a node is found from which a 
task can be obtained, or the number of probes reaches a static 
probe limit, L,. In the latter case, the node must wait until 
another tssk departs before possibly attempting again to initiate a 
transfer. (This is completely analogous to the operation of the 
Sender policy, in which a node that fails to find a suitable 
destination to which to transfer a task must wait until another 
task arrives before attempting again to initiate a transfer.) The 
Receiver policy with T=l has been studied using a simulation 
model by Livny and Melman [1982], who term it the “poll when 
idle algorithm”. 

Reservation 

The Reservation policy, like the Sender policy but in contrast to 
the Receiver policy, will only transfer newly arriving tasks. This 
may be advantageous in multiprogramming systems in which 
nodes attempt to give each of the tasks present some share of the 
total available processing power. If the Receiver policy is used in 
such a system, almost all task transfers will involve executing 
tasks, and may be substantially more costly than transfers of 
non-executing tasks. 

In the Reservation policy, as in the Receiver policy, a node 
attempts to replace a task that has completed processing if there 
are less than 2’ tasks remaining at the node. A remote node is 
selected at random and probed to determine whether the transfer 
of the next task to originate at that node would place its queue 
length below the threshold value 2”. If not, and if no other 
“reservation” is pending for this node, then this next arrival is 
“reserved” by the probing node; it is transferred upon arrival if 
no other tasks have arrived at the probing node by that time. If 
the reservation attempt is not successful, another node is selected 
at random and probed in the same manner. This continues until 
either a node is found at which the next arrival can be reserved, 
or the number of probes reaches a static probe limit, L, In the 
latter case, the node must wait until another task departs before 
possibly attempting again to reserve a task. 

Our evaluation of this policy is optimistic. (Even this optimistic 
evaluation predicts unsatisfactory performance.) At the time a 
reservation is attempted, we assume that the probed node can 
“see into the future” to the arrival time of the (potentially) 
reserved task. The reservation is made only if the probed node 
will be above threshold at that time. Also, even when a 
reservation request is successful, the probed node considers this 
next arrival as ineligible for other reservation requests only if it 
will actually be transferred to the node holding the reservation. 
Finally, we assume that the probability that a task will be 
processed locally rather than transferred, given that it arrives 
when the node queue length is at or over threshold, is 
independent of the prior history of task arrivals and departures. 
In fact, this probability is higher for tasks with shorter 
interarrival times. 

Many of the results of our study are illustrated in the 
accompanying figure. While the figure illustrates specific choices of 
parameter values, the results are quite robust with respect to these 
choices; a substantial part of the full paper is devoted to 
demonstrating this robustness. The results inelude: 

l Both receiver-initiated and sender-initiated policies offer 
substantial performance advantages over the situation in which no 
load sharing is attempted (shown as M/M/l in the figure). 

l Sender-initiated policies are preferable to receiver-initiated 
policies at light to moderate system loads. 

. Receiver-initiated policies are preferable at high system loads, but 
only if the costs of task transfer under the two strategies are 
comparable. 
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. If the cost of task transfers under receiver-initiated policies is 
significantly greater than under sender-initiated policies (for 
example, because executing tasks must be transferred), then 
sender-initiated policies provide uniformly better performance. 

l Modifying receiver-initiated policies to transfer only newly-arrived 
tasks (so as to avoid the cost of transferring executing tasks) 
yields unsatisfactory performance. 
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