

Status of Sustainable Biofuel Efforts for Aviation

Presenter: Tim Rahmes email: timothy.f.rahmes@boeing.com

BOEING is a trademark of Boeing Management Company. Copyright © 2004 Boeing. All rights reserved.

Motivations

Fuel Development

Commercial Aircraft Approach

The Path Forward

Why Boeing is concerned about sustainable biofuels?

Customers & Alternative Fuels

- Airline customers are hopeful about alternative fuels for 3 reasons:
 - 1. Environmental: CO₂ emissions
 - 2. Fuel availability
 - 3. Potential benefit to fuel costs

DoD customers are interested in these as well

Boeing's approach is to demonstrate feasibility, identify sustainable biofuel sources, and promote viable commercial markets

Plant-based feedstocks naturally remove CO₂ from the atmosphere

Petroleum releases CO₂ that has been locked underground

Petroleum-based fuel

Plant feedstocks reabsorb CO₂ emissions as they grow

Plant-based fuel

Fuel Development

Viable and sustainable feedstock alternatives

Jatropha ready: 2-4 years	Algae ready: 8-10 years
Benefits •Uses marginal land •Agronomy is sufficiently advanced	Benefits •High productivity •Potential for scale
Challenges	Challenges
•Warm climates only	 Major process tech. innovation needed
 Mechanical harvesting not yet mature 	•GMO risks
Halophytes ready: 2-4 years	Camelina ready: now
Benefits	Benefits
•Uses desert land and salt water	•Ready-to-go
•Part of system designed for GHG reduction	•Can integrate with traditional agriculture
	Challenges
Challenges	 Limited total potential owing to yield
Proven at pilot scale to-date	 Somewhat tied to grain market swings
 Improve agronomy for cost reduction 	

Viability is based on timing, technology and local resources.
 Sustainability criteria guides acceptable feedstock selection.

Typical Jet Fuel

The industry needs fuels with composition similar to above (i.e. a replacement or "drop-in" fuel)

Processes that create Synthetic Paraffinic Kerosene (SPK)

GTL/CTL/BTL: Use the F-T "Fischer-Tropsch" Process

Jet fuel can be produced with the same class of compounds (paraffin's) whether the starting material was made via a FT process or a bio-derived oil.

UOP's Renewable Jet Process Chemistry

UOP Catalvst

H₂C

H₂C

H₃C

Synthetic Paraffinic

Kerosene

Η,

CH₃CH₃

 CH_3

CH₃CH₃

CH₃

CH

Н₂С

CH.

CH³

- Natural oils contain oxygen, have high molecular weight.
- First reaction removes oxygen product is diesel range waxy paraffins
- Second reaction "cracks" diesel paraffins to smaller, highly branched molecules
- End product is same as molecules already present in aviation fuel

Feedstock flexible, but with consistent product properties

Boeing Commercial Aircraft approach to sustainable biofuels

Boeing has partnered to enable sustainable biofuel flight tests

- Demonstrate technical feasibility
- Identify sustainable biofuel sources
- Promote development of viable commercial markets

Fuel Property Testing

	ASTM D 1655 Table 1	ICP for metals	GC-MS	Materials Compatibility	Other
Boeing	Neat & Blend			Neat	Dielectric
UOP		Neat	Neat		2D-GC
AFRL	Neat & Blend	Neat	Neat & Blend	Blends	
Outside Labs	Neat & Blend				
Engine Companies	Blend				

Interesting Results for all 50% SPK blends:

- Heat of Combustion: On a mass basis are ~1% higher than typical jet fuel
- Density: A key parameter limiting higher blends under current specification
 - (e.g. renewable aromatics are possible fix for this)
- Dielectric: A fit-for-use property with ramifications to Fuel Quantity Indication Systems (FQIS)

3 fuels met all performance specifications at a 50% blend with jet fuel.

The CFM Engine Technical Program

- Ground testing at Peebles, OH
- CFM56-7B development engine
 - Back-to-back runs comparing Jet A, 50%, and 25% biofuel blends
- Performance testing consisted of measuring SFC at several power settings from ground idle to take-off
- Operability testing
 - Start times, Lean-blow out margin, and accel/decel times are within expected variation
 - Specific Fuel Consumption (SFC) improvement noted.
 - No engine deterioration noted.
- Emissions testing also conducted for regulated emissions species
 - Results mainly within expected variation of jet fuel, but some benefit is possible

Inlet Turbulent Control Structure

Emissions Probe

Pratt & Whitney Technical Program

- Ground testing in Mississauga, Ontario, Canada
- PW615 tested with Jet A-1, 50% and a 100% blends
- Engine performance
 - Controllability, engine start, flame-out, and fuel flows within expected variation
 - No engine degradation evident via performance or hardware inspection
- Emissions
 - Emissions of each species were compared for all 3 fuels used
 - No significant change in Hydrocarbon (HC), Carbon Monoxide (CO), or Nitrogen Oxides (NOx)
 - Smoke number decreased as the percentage of alternate fuel to Jet A-1 was increased

Commercial Biofuel Program Summary

- Encouraging sustainable biofuel development for aviation
- Demonstrating biofuel production, test, and operability
- Working with fuel suppliers, engine companies, & customers
- A team effort is underway to address industry concerns about:
 - CO₂, fuel availability and cost

Evaluate & select 2nd generation feedstocks

Identify & pilot processing methods

Help create "drop-in" lower CO₂ lifecycle, sustainable biofuel

Flights & Engine Tests

The Path Forward

Bio-derived jet fuel certification in work

ASTM D 1655

- BTL fuels likely to be certified up to 50% blend
 - Data shows chemical equivalence between F-T fuels from different feedstocks (CTL, GTL, CBTL, BTL)
 - Certification possibly in 2009
- HRJ fuel samples have been evaluated from many sources
 - Results are very similar to F-T fuels
 - Certification possibly in 2010

Sustainable biofuels – Boeing's plan and approach

Achieve near-term market viability of sustainable biofuels for commercial aviation

Copyright © 2004 Boeing. All rights reserved.

Presentation Title 20