Life-on-a-Chip

Mary E. Lidstrom & Deirdre R. Meldrum Microscale Life Sciences Center University of Washington

NAE Regional Symposium March 13, 2003

Life's Complexity Pyramid Comprehend complexity, versatility & robustness of living systems?

[Z. Oltvai & A-L Barabási 2002 Science 298, 763-764.)]

A single cell...

To understand how a system functions, we must first examine how individual components dynamically interact during operation:

- What is the voltage on each signal line?
- How are the signals encoded?
- How can we stabilize the voltage against noise and external fluctuations?
- How do the circuits react when a malfunction occurs in the system?
- What are the design principles and possible circuit patterns?
- How can we modify them to improve system performance?

[H. Kitano (2002) Science 295:1662-1664.]

CEGS

Centers of Excellence in Genomic Science

- New Centers funded by NIH NHGRI
- Microscale Life Sciences Center (MLSC) CEGS at University of Washington

- Started August 2001
- Focus on microscale and life-on-a-chip studies in:
 - Proteomics
 - Metabolic Networks
 - Cancer biology
 - Viral pathogenesis
 - Bacterial pathogenesis

MLSC

Outline

MLSC Goals

• Functional genomics, a cell at a time

- **△** Enabling technology
- **△** Fundamental applications
- Measure multiple parameters in individual living cells in real-time to correlate cellular events with genomic information.
 - △ Develop microsystems for analyzing complex cellular processes.
 - △ Apply these systems to specific biological problems:
 - Proteomics
 - Metabolic networks
 - Cancer biology
 - Viral pathogenesis
 - Bacterial pathogenesis

Why Individual Cells?

Populations provide averages

- Heterogeneity cannot be assessed in bulk cultures
- What is biological noise?
- Is it significant in complex biological events?

Single Cell Pathway: Biological Wish List

Measure complex biological events in multiple, living single cells in real time

- Monitor cell function (e.g. respiration rates)
- Monitor expression of central genes
- Measure outcomes (e.g. metabolic product, protein/receptor expression, alteration of cell physiology or morphology)

Sensors: O₂, pH, CO₂, temperature, organic metabolites

Single Cell Pathway: Common Needs

• Measure events in single cells under stressed and non-stressed conditions

- Use fluorescent reporters to monitor gene expression
- Harvest cells after datagathering phase for single-cell proteomics

Biological Questions

• Single Cell Pathway

- **△ Metabolic Networks**
- **△ Viral Pathogenesis**
- **△** Bacterial Pathogenesis
- Proteomics
- Cancer Biology

Metabolic Networks (Lidstrom Group)

- **Goal:** understand and manipulate central metabolism in a bacterium that grows on methanol
- Application: develop environmentally-benign methanol chemical production systems

Methylobacterium extorquens AM1

• Problem requiring single cell analysis: metabolic heterogeneity

Accomplishments: Metabolic Networks

• Fusion constructs made to GFP and YFP

 Populations analyzed by Fluorescence-Activated Cell Sorting (FACS)

Metabolic Networks: Progress

 Cells modeled in environmental chamber with respect to nutrient consumption, mixing, and flow rate

Next step: Analyze multiple metabolic modules in individual cells

[Kelly FitzGerald]

Bacterial Pathogenesis: (Cookson Group)

• Goal: understand interactions of Salmonella with host macrophages, including inflammatory cell death (pyroptosis)

• Applications:

Brain: stroke, neurodegeneration Heart: myocardial infarction Multiple organs: autoimmune diseases Infections, inflammatory processes

• **Problem requiring single cell analysis:** Heterogeneity in infected macrophages

Accomplishments: Bacterial Pathogenesis

Gene expression inside macrophages: *fliC* is not expressed, contrary to results from bulk experiments

Promoter driving GFP: constitutive

GFP + Texas Red signal

GFP signal

Viral Pathogenesis: (Mullins/Mittler Group)

Goal: understand effects of **HIV-1** infection on target cells in vitro and ex vivo **Applications:** find new targets for drug and vaccine development Why single cell analysis: heterogeneity of infected cell populations, fewer than 1:100 cells infected in vivo

HIV-1 virion structure

Viral Pathogenesis: HIV-1 infection of T cells

Dissect the impact of HIV infection on gene and protein expression in naïve and memory T-cells

- Microarray analysis in bulk culture
- Single cell proteomics to screen marker proteins (e.g., p24)
- Initial focus on T-cell lines in vitro
- Long-term goal is to assess rare infected T-cells in *ex vivo* samples

p24 capsid protein

Accomplishments: Viral Pathogenesis

- Microarray analysis showed increased expression of genes responsible for cholesterol uptake and biosynthesis in HIV-1 infected cells
- MIP-1α and SDF-1α induce expression of early response genes

Next steps: proteomics in bulk and single cells

Single Cell Pathway: Expected Outcomes

Proteomics (Dovichi Group)

- Goal: Monitor very low level protein expression in single cells
 - △ What does it mean to say that a protein is not expressed?
 - Either no copies are present
 - Or analytical sensitivity is not sufficient to detect protein
 - △ How does variation in protein expression modulate cellular function?
 - Stochastic variation in transcription regulator expression
- Application: Understand regulatory circuits at the single cell level
 - △ Monitor variation in expression with cell cycle
 - △ **Observe cell-to-cell heterogeneity in expression**

Comprehensive 2-D Capillary Electrophoresis

Stellie Sciences Cel

2-D Capillary Electrophoresis Instrument

Fully automated 2-D electrophoresis HT29 cell extract

Fully automated 2-D electrophoresis single MCF-7 cells

Cancer Diagnostics (Reid Group)

- Goal: Automated biopsy screening
 - △ Decrease biopsy sample size
 - △ Decrease sample processing time
- Application: Predict disease & stratify risk

Barrett's Esophagus

Tissue disaggregation Single cell suspension of biopsy

Barrett's Esophagus Molecular Predictors of Progression

Teodori et al, Cytometry 1998; 34:254

Results and Comparison

Hand-minced biopsy after 40 micron filtration

Results of sample disaggregation on test platform *without* filtering

Test platform disaggregation yields a single cell suspension comparable to the traditional method, with less clumping

Future Directions

- Develop a fully automated and motorized tissue disaggregation platform
 A Further testing
 - **△** Clinical use
- MEMS grinders currently under development

Study of Aging & Correlation to Cancer (Gottschling Group)

- **Background:** % invasive cancers in humans increases with age
- Goal: provide highthroughput, automated partitioning of yeast daughter cells for studies
 - △ Current methods require sleepless nights in Seattle!

[DePinho, Nature 408, 248-254 (2000)]

- Application: study yeast as model organism (Gottschling Lab)
 - △ Shown that frequencies of chromosome loss & recombination in yeast genome increases with age
 - △ New study is to analyze LOH with increasing age in yeast

Automation of Yeast for Aging/Cancer Studies

- Side channel & valve capture single cell
- Bond cell wall to channel surface
- Series of channels & valves to deposit daughter cells onto agar plate

[Koschwanez, Holl, Meldrum]

Outline

- Goals of MLSC
- Organization
- Motivation and Application Areas
- **Technology Development**

Application/Module Development Process

Foundation Technologies Needed to Support Applications

- Automated microfluidic handling and sorting of cells
- Highly sensitive detection small molecules, and proteins
- Integrated microsystems platform for the maintenance of living cells (eukaryotic and prokaryotic)
- Integrated controls and data handling system

Team Expertise

- Genomics and Proteomics
- Microbiology, Biochemistry, Analytical Chemistry
- Microfluidic device design test and analysis
- MEMS modules / processes
- Detection
- Nanotechnology
- Sensor Fusion
- Automation/Systems integration

Initial Generic Setup

Lidstrom Lab AM1 Setup

Laser Scanning Confocal Microscope

Overview of Setup

Micro-Environmental Chamber

Advantages:

- Ability to control media concentration and temperature in a closed space.
- Compatibility with microscopes and microfluidic devices.

3D Confocal imaging

3D image of *M. extorquens* AM1 cells

- Rod shape five bacteria with length $< 5 \,\mu m$.
- Green fluorescence detection.

O₂ Sensing

Simulation of oxygen consumption

- Low concentration of O₂ causes high phosphorescence intensity of polyporphyrin Pt(TFPP) thin films.
- Na₂SO₃ in the lower-left part of the water droplet.
- Emission intensity increased by 60% after 60 seconds—indicates less O₂.

Before introducing Na₂SO₃

10 seconds after introducing Na₂SO₃ 60 seconds after introducing Na₂SO

Fluorescence Detection

The detection of protease expression of HIV-infection of macrophages with CD4 antibodies

HIV-infected group. The GFP expression is turned on.

Mock group

Technology Development

- Δ Cell size separation microsystem
- \triangle Electroimpedance spectroscopy
- **△** Future technologies

Manipulation of DNA and Cells (Meldrum Group)

(Crippen, Holl, Kosar, Meldrum)

Cell Size Separation Microsystem

- △ Model system: *M. extorquens* AM1
- Δ Rod-shaped: ~ 1 μ m diameter, ~ 3-6 μ m length
- △ **Grow lengthwise**
- △ Divide in the middle about every 6 hr
- \triangle Age \propto Length

Phase Contrast Image of AM1 Cells

(Kosar, Holl, Lidstrom, Meldrum)

Microfabricated Devices for Cell Size Separation

(Kosar, Holl, Meldrum)

Electrokinetic alignment of AM1 cells inside a microchannel while flowing (10V p2p, 100kHz)

(Kosar, Holl, Meldrum)

Manipulation of *M. extorquens* AM1 using DEP

Random Orientation

Aligned with Electric Field

10 um diameter obstacles with 10 um separations10 um deep channel (PDMS on glass)16 V peak-to-peak 1 MHz sinusoidal signal

(Kosar, Holl, Lidstrom, Meldrum)

Results: Separation by Size

(Kosar, Holl, Meldrum)

Results: Separation by Size

(Kosar, Holl, Meldrum)

Problem: Cell Attachment (Biofilms)

Potential solution: Micropattern pp4G (plasma polymerized tetraglyne) coating on glass PEG-like non-fouling surface

(Kosar, Hanein, Lipscomb, Ratner, Böhringer, Holl, Meldrum)

Real-time detection of cells using electroimpedance spectroscopy (Seriburi/Phillips/Holl/Meldrum)

- Why Electroimpedance Spectroscopy?
 - △ Detection and characterization of cells in real-time ^{1,2,3}
 - \triangle Fast, direct, minimally-invasive method
 - Δ Easy fabricated and integrated MEMS device
- Simulations and preliminary measurements indicate adequate sensitivity for categorizing cells types and properties
 - 1. S. Gawad et al., MicroTAS 2002, pp.649-651.
 - 2. S. Gawad et al., Lab on a Chip, vol. 1, 2001, pp. 76-82
 - 3. H. Edward Ayliffe et al., J. of MEMS, vol. 8, 1999, pp. 50-57

Real-time detection of cells using electroimpedance spectroscopy

- Simulations indicate that cell sizes, cell types, and the number of cells will be detectable with this system
- Simulations show optimal frequency applied should be in kHz to MHz range

Real-time detection of cells using electroimpedance spectroscopy

- Microfabricated interdigitated gold electrodes on glass with a PDMS (Polydimethylsiloxane) fluid channel was used
- Results show that impedance magnitude and phase varied with cell concentrations

Future MEMS Technologies (Böhringer Group)

- Microfluidic Breadboard: MEMS modules and components for rapidly adaptable and reconfigurable microsystems
- Self-assembly as enabling technology for integration of heterogeneous microdevices electrochemical modulation of surface hydrophobicity
- Integration of biocompatible materials into MEMS processes

(Böhringer, Xiong, Wang, Hanein et al.)

(Böhringer, Hanein, Pan, et al.)

Detection

- Multiwavelength fluorescence detection in a microsystem (Vogel Group)
 - △ Phase 1: use confocal microscopy
 - △ Phase 2: incorporate miniaturized system into microsystems
- Ultra-sensitive (ppmppb) detection of small molecules as metabolic indicators (Burgess Group)
 - △ **Raman waveguide system**

Gretchen Baneyx, Loren Baugh, Viola Vogel, *Proc. Natl. Acad. Sci. USA* 98 (2001) 14464

(Burgess, Marquardt, et al., CPAC)

Example MEMS Module

(Microsystem for Study of *Saccharomyces cerevisiae* Growth and Progeny LOH Expression)

(Holl, Hanein, Gottschling, Meldrum)

One of Several Modular Microsystem Integration Strategies ("Legome" [J. Doyle])

- Fluidic and electrical connectivity
- Mechanical probe access
- Optical access
- Thermal access
- Magnetic probe access
- Flexible
- Easily manufactured
- Rapid turnaround
- Low cost

New Course Winter 2003 EE546 Biology & Genomics for Engineers

(Advanced Topics in Control System Theory)

From molecules

to cells/tissues

to systems

- for students with no biology background
- learn about biology from an engineering perspective
- combine problem-based learning, computational analysis and hands-on laboratory exercises

Acknowledgments

- NIH National Human Genome Research Institute for funding the MLSC CEGS and ACAPELLA Advanced Development
- Faculty, staff, post-docs, graduate students, and undergraduate students that participate in this research

<http://www.life-on-a-chip.washington.edu>

