
The Nachos Instructional Operating System

Wayne A� Christopher� Steven J� Procter� and Thomas E� Anderson

Computer Science Division

University of California
Berkeley� CA �����

Abstract

In teaching operating systems at an undergraduate level� it is very important to provide a

project that is realistic enough to show how real operating systems work� yet simple enough that

the students can understand and modify it in signi�cant ways� A number of these instructional

systems have been created over the last two decades� but recent changes in hardware and software

design� along with the increasing power of available computational resources� have changed the

basis for many of the tradeo�s made by these systems�

We have implemented an instructional operating system� called Nachos� and designed a

series of assignments to go with it� Our system includes CPU and device simulators� and runs

as a regular UNIX process� Nachos illustrates and takes advantage of modern OS technology�

such as threads and remote procedure calls� recent hardware advances� such as RISC�s and

the prevalence of memory hierarchies� and modern software design techniques� such as object�

oriented programming and distributed computing�

We have used Nachos in the undergraduate operating systems class at Berkeley� with positive

results� Nachos is freely available� and we would like to see it widely used for undergraduate

instruction�

� Introduction

In undergraduate computer science education� course projects provide a useful tool for teaching
basic concepts and for showing how those concepts can be used to solve real�world problems� A
realistic project is especially important in undergraduate operating systems courses� where many of
the concepts are best taught� we believe� by example and experimentation�
This paper discusses an operating system� simulation environment� and set of assignments that

we developed for the undergraduate operating systems course at Berkeley�
Over the years� numerous projects have been developed for teaching operating systems� among

the published ones are Tunis �Holt ����	 and Minix �Tanenbaum ���
b� Aguirre et al� ����	� Many
of these projects were motivated by the development of UNIX �Ritchie � Thompson ��
�	 in the
mid

�s� Earlier operating systems� such as MULTICS �Daley � Dennis ����	 and OS���
 �Mealy
et al� ����	 were far too complicated for an undergraduate to understand� much less modify� in a

A copy of Nachos can be obtained by anonymous ftp from sprite�berkeley�edu� �le �nachos�nachos�����tar�� The
authors	 e�mail addresses are ffaustus�procter�teag
cs�berkeley�edu� This work was supported in part by a grant from
the College of Engineering� University of California at Berkeley�

�

semester� Even UNIX itself is too complicated for this purpose� but UNIX showed that operating
systems need only a few simple but powerful interfaces� and that the core of an operating system can
be written in only a few dozen pages �Lions ��

	� Indeed� the project previously used at Berkeley�
the TOY Operating System� was originally developed by Brian Kernighan in ��
��
The introduction of minicomputers� and later� workstations� also aided the development of in�

structional operating systems� Rather than having to run the operating system on the bare hardware�
computing cycles became cheap enough to make it feasible to execute an operating system kernel
using a simulation of real hardware� The operating system can run as a normal UNIX process� and
invoke the simulator when it would otherwise access physical devices or execute user instructions�
This vastly simpli�es operating systems development� by reducing the compile�execute�debug cycle
and by allowing the use of o��the�shelf symbolic debuggers� Because of these advantages� many
commercial operating system development e�orts now routinely use simulated machines �Bedichek
���
	�
However� recent advances in operating systems� hardware architecture� and software engineering

have left many operating systems projects developed over the past two decades out of date� Network�
ing and distributed applications are now commonplace� Threads are crucial for the construction of
both operating systems and higher�level concurrent applications� And the cost�performance trade�
o�s among memory� CPU speed and secondary storage are now quite di�erent from those imposed
by core memory� discrete logic� magnetic drums� and card readers�
For these reasons� we decided to design and implement a new teaching operating system and

simulation environment� Our system� called Nachos� makes it possible to give assignments that
require students to write signi�cant portions of each of the major pieces of a modern operating sys�
tem� thread management� �le systems� multiprogramming� virtual memory� and networking� We use
these assignments to illustrate concepts that we believe are necessary to understand the computer
systems of today and of the future� concurrency and synchronization� caching and locality� the trade�
o� between simplicity and performance� building reliability from unreliable components� dynamic
scheduling� the power of a level of translation� distributed computing� layering� and virtualization�
In building Nachos� we were continually faced with a tradeo� between simplicity and realism�

For example� a complete UNIX�like �le system would be too complicated for students to understand
in only a few weeks� Our approach was to build the simplest implementation we could think of for
each sub�system of Nachos� this provides students a working example� albeit overly simplistic� of
the operation of each component of an operating system� The assignments ask the students to add
functionality to this bare�bones system and to improve its performance on micro�benchmarks that
we provide� As a result of our emphasis on simplicity� the Nachos operating system is about ��

lines of code� about half of which are devoted to interface descriptions and comments�� It is thus
practical for students to read� understand� and modify Nachos during a single semester course�
We have used Nachos for one term as the project for the undergraduate operating systems

course at Berkeley� we then revised both the code and the assignments based on our experiences
with using it� Nachos currently runs only on DEC MIPS workstations� but we believe that it would
be straightforward to port to other platforms�
The rest of this paper describes Nachos in more detail� Section � provides an overview of Nachos�

Section � describes the Nachos assignments� Sections � and � summarize our experiences�

�The hardware simulator takes up another ���� lines� but students need not understand the details of its operation�

�

� Nachos Overview

Like many of its predecessor instructional operating systems� the Nachos kernel and hardware simu�
lator run together in the same UNIX process�� Nachos has several signi�cant di�erences with earlier
systems�

� Because we simulate a standard� well�documented� instruction set �MIPS R���

 integer
instructions �Kane ���
	�� we can run normal C programs as user programs on our operating
system� In the past� operating systems projects typically simulated their own ad hoc instruction
set� requiring user programs to be written in assembly language� Because the R���

 is a
RISC� it can be simulated with only about �
 pages of code�

� We accurately simulate the behavior of a network of workstations� each running Nachos� We
connect Nachos �machines�� each running as a UNIX process� together via sockets� A thread
on one �machine� can then send a message to a thread running on a di�erent �machine�� of
course� both are simulated on the same physical hardware�

� Our simulation is deterministic� Debugging non�repeatable execution sequences is a fact of
life for professional operating systems engineers� but it did not seem advisable for us to make
that experience our students� �rst introduction to operating systems� Instead of using UNIX
signals to simulate asynchronous devices such as the disk and the timer� Nachos maintains
a simulated time that is incremented whenever a user program executes an instruction and
whenever a call is made to certain low�level operating system routines� Interrupt handlers are
then invoked when the simulated time reaches the appropriate point��

� Our simulation is also randomizable to add unpredictable� but repeatable� behavior� For
instance� the network simulation randomly chooses which packets to drop� provided the initial
seed to the random number generator is the same� however� the behavior of the system is
repeatable�

� Nachos is implemented in a subset of C��� Object�oriented programming is becoming more
popular� and we found that it was a natural idiom for stressing the importance of modularity
and clean interfaces in building operating systems� To simplify matters� we omitted certain
aspects of the C�� language� derived classes� operator and function overloading� and C��
streams� We also kept inlines to a minimum� Although our students did not know C�� before
taking our course� we found that they learned the language very easily�

� The Nachos assignments take a quantitative approach to operating system design� Frequently�
the choice of how to implement some piece of operating system functionality comes down to a
tradeo� between simplicity and performance� We believe that teaching students how to make
informed decisions about tradeo�s is one of the key roles of an undergraduate operating systems
course� The Nachos hardware simulation re�ects current hardware performance characteristics�

�Minix takes the di�erent approach of running directly on personal computers� While this approach is more
realistic� it makes debugging more di
cult�

�The one aspect of the simulation we did not make reproducible was the precise timing of network communications�
but since this came at the end of the semester� it did not seem to cause problems�

�

we exploit this by having students measure the performance of their implementations on some
simple workloads that we provide�

� The Assignments

Nachos contains �ve major components� each the focus of one assignment given during the semester�
thread management and synchronization� the �le system� user�level multiprogramming support� the
virtual memory system� and network support� Each assignment is designed to build upon previous
ones� for instance� every part of Nachos uses thread primitives for managing concurrency� This
re�ects part of the charm of developing operating systems� you get to �use what you build��
In this section� we discuss each of the �ve assignments� including the hardware simulation fa�

cilities and the operating system structures we provide� along with what we ask the students to
implement� Students worked in pairs� and we conducted �� minute graded design reviews after
every assignment� We found that the design reviews were very helpful at encouraging students to
design before implementing�

��� Thread Management

The �rst assignment introduces the concepts of threads and concurrency� We provide students with a
basic working thread system and an implementation of semaphores� the assignment is to implement
Mesa�style locks and condition variables �Lampson � Redell ���
	 using semaphores� and then to
implement solutions to a number of concurrency problems using these synchronization primitives�
For instance� we ask students to program a simple producer�consumer interaction through a bounded
bu�er� using condition variables to denote the �bu�er empty� and �bu�er full� states�
In much the same way as pointers for beginning programmers� understanding concurrency re�

quires a conceptual leap on the part of students� Contrary to Dijkstra �Dijkstra ����	� we believe
that the best way to teach concurrency is with a �hands�on� approach� Nachos helps in two ways�
First� thread management in Nachos is explicit� students can trace� literally statement by statement�
what happens during a context switch from one thread to another� both from the perspective of
an outside observer and from that of the threads involved� We believe this experience is crucial
to de�mystifying concurrency� Precisely because C and C�� allow nothing to be swept under the
covers� concurrency may be easier to understand �although harder to use� in these programming
languages than in those explicitly designed for concurrency� such as Ada �Mundie � Fisher ����	�
Modula�� �Nelson ����	� and Concurrent Euclid �Holt ����	�
Second� a working thread system� as in Nachos� allows students to practice writing concurrent

programs and to test out those programs� Even experienced programmers �nd it di�cult to think
concurrently� a widely used OS textbook had an error in one of its concurrent algorithms that went
undetected for several years� When we �rst used Nachos� we omitted many of the practice problems
we now include� thinking that students would see enough concurrency in the rest of the project� In
retrospect� the result was that many students were still making concurrency errors even in the �nal
phase of the project�
Our thread system is based on FastThreads �Anderson et al� ����	� Our primary goal was

simplicity� to reduce the e�ort required for students to trace the behavior of the thread system�

�

Our implementation is a total of about �
 pages of C�� and a page of MIPS assembly code� For
simplicity� thread scheduling is normally non�preemptive� but to emphasize the importance of critical
sections� we have a command�line option that causes threads to be time�sliced at �random�� but
repeatable� points in the program� Concurrent programs are correct only if they work when �a
context switch can happen at any time��

��� File Systems

Real �le systems can be very complex artifacts� The UNIX �le system� for example� has at least
three levels of indirection � the per�process �le descriptor table� the system�wide open �le table�
and the in�core inode table � before one even gets to disk blocks� As a result� in order to build a
�le system that is simple enough for students to read and understand in a couple of weeks� we were
forced to make some hard choices as to where to sacri�ce realism�
We provide a basic working �le system that is as stripped of as much functionality as possible�

While the �le system has an interface similar to that of UNIX �Ritchie � Thompson ��
�	 �cast
in terms of C�� objects�� it also has many signi�cant limitations with respect to commercial �le
systems� there is no synchronization �only one thread can access the �le system at a time�� �les
have a very small maximum size� �les have a �xed size once created� there is no caching or bu�ering
of �le data� the �le name space is completely �at �there is no hierarchical directory structure�� and
there is no attempt at providing robustness across machine and disk crashes� As a result� our basic
�le system takes only about �� pages of code�
The assignment is �rst� to correct some of these limitations� and second� to improve the perfor�

mance of the resulting �le system� We list a few possible optimizations� such as caching and disk
scheduling� but it is up to the students to decide which are the most cost�e�ective for our benchmark
�the sequential write and then read of a large �le��
At the hardware level� we provide a disk simulator� which accepts �read sector� and �write

sector� requests and signals the completion of an operation via an interrupt� The disk data is stored
in a UNIX �le� read and write sector operations are performed using normal UNIX �le reads and
writes� After the UNIX �le is updated� we calculate how long the simulated disk operation should
have taken �from the track and sector of the request�� and set an interrupt to occur that far in the
future� Read and write sector operations �emulating hardware� return immediately� higher level
software is responsible for waiting until the interrupt occurs�
We made several mistakes along the way of developing the Nachos �le system� In our �rst

attempt� the �le system was much more realistic than the current one� but it also took more than
four times as much code� We were forced to re�write it to cut it down to something that students
could quickly read and understand� When we handed out this simpler �le system� we did not provide
enough code for it to be completely working� leaving out �le read and write operations to be written
by the students� Although these are fairly straightforward to implement� the fact that our code did
not work meant that students had di�culty understanding how each of the pieces of the �le system
�t together�
We also initially gave students the option of which limitations to �x� from our experience� we

found that students learned the most from �xing the �rst four listed above� The result is that�
even though virtually all modern �le systems include some form of write�ahead logging or log�
structure �Rosenblum � Ousterhout ����	� the assignment now completely ignores the issue of crash

�

recovery� This is simply a tradeo�� in the limited time available� we focus on how basic �le systems
work� how the �le abstraction allows disk data layout to be radically changed without changing the
�le system interface� and and how caching can be used to improve I�O performance�

��� Multiprogramming

In the third assignment� we provide the code to create a user address space� load a Nachos �le
containing an executable image into user memory� and then to run the program� Our initial code is
restricted to running only a single user program at a time� Students expand on this base to support
multiprogramming� Students implement a variety of system calls �such as UNIX fork and exec�� as
well as a user�level shell� We also ask them to optimize the multiprogramming performance of their
system on a mixed workload of I�O� and CPU�bound jobs�
While we supply relatively little Nachos code as part of this assignment� the hardware simulation

does require a fair amount of code� We simulate the entire MIPS R���

 integer instruction set and
a simple single�level page table translation scheme� �For this assignment� a program�s entire virtual
address space must be mapped into physical memory� true virtual memory is left for assignment
four�� In addition� we provided students an abstraction that hid most of the details of the MIPS
object code format�
This assignment requires few conceptual leaps� but it does tie together the work of the previous

two assignments� resulting in a usable� albeit limited� operating system� Because our simulator can
run C programs� our students found it easy to write the shell and other utility programs �such as
UNIX �cat�� to exercise their system� �One overly ambitious student attempted to port emacs�� The
assignment illustrates that there is little di�erence between writing user code and writing operating
system kernel code� except that user code runs in its own address space� isolating the kernel from
user errors�
One important topic we chose to leave out �again� as a tradeo� against time constraints� is

the trend toward a small�kernel operating system structure� where pieces of the operating system
are split o� into user�level servers �Wulf et al� ��
�	� Because of its modular design� it would
be straightforward to move Nachos towards a small�kernel structure� except that �i� we have no
symbolic debugging support for user programs and �ii� we would need a stub compiler to make it
easy to make procedure calls across address spaces�

��� Virtual Memory

Assignment four asks students to replace their simple memory management code from the previous
assignment with a true virtual memory system� that is� one that presents to each user program the
abstraction of an �almost� unlimited virtual memory size by using main memory as a cache for the
disk� We provide no new hardware or operating system components for this assignment�
The assignment has three parts� First� students implement the mechanism for page fault handling

� their code must catch the page fault� �nd the needed page on disk� �nd a page frame in memory
to hold the needed page �writing the old contents of the page frame to disk if it is dirty�� read
the new page from disk into memory� adjust the page table entry� and then resume the execution
of the program� This mechanism can take advantage of what the students have built in previous

�

assignments� the backing store for an address space can be simply represented as a Nachos �le� and
synchronization is needed when multiple page faults occur concurrently�
The second part of the assignment is to devise a policy for managing the memory as a cache

� for deciding which page to toss out when a new page frame is needed� in what circumstances
�if any� to do read�ahead� whether or not to write unused� dirty pages back to disk in advance to
speed later page fault handling� and how many pages to bring in before initially starting to run a
program �Levy � Lipman ����� Le�er et al� ����	�
These policy questions can have a large impact on overall system performance� in part because

of the large and increasing gap between CPU speed and disk latency � this gap has widened by
two orders of magnitude in only the last decade� Unfortunately� the simplest policies often have
unacceptable performance� To encourage students to implement realistic policies� the third part of
the assignment is to measure the performance of the paging system on a benchmark we provide
� a matrix multiply program where the matrices do not �t in memory� This workload is clearly
not representative of real�life paging behavior� but it is simple enough that students can understand
the impact of policy changes on the application� Further� the application illustrates some of the
problems with caching � small changes in the implementation of matrix multiply can have a large
impact on performance �Lam et al� ����	�

��� Networking

Although distributed systems have become increasingly important commercially� most instructional
operating systems have not included any networking components� To address this� the capstone of
the project is to write a signi�cant and interesting distributed application�
At the hardware level� we simulate the behavior a network of workstations� each running Nachos�

by connecting the UNIX processes running Nachos via sockets� The Nachos operating system and
user programs running on it can communicate with other �machines� running Nachos simply by
sending messages into the emulated network� the transmission is actually accomplished by socket
send and receive� The Nachos network provides unreliable transmission of limited�size packets from
machine to machine� The likelihood that any packet will be dropped can be set as a command�line
option� as can the seed used to choose which packets are randomly chosen to be dropped� Packets
are dropped but never corrupted� so that checksums are not required�
To demonstrate how to use the network and at the same time� how to take advantage of layering�

we built a simple post o�ce protocol on top of the network� The post o�ce layer provides a set
of �mailboxes� that serve to route incoming messages to the appropriate waiting thread� Messages
sent through the post o�ce also contain a return address to be used for acknowlegements�
The assignment is �rst to implement protocol layers to provide for the reliable transmission of

arbitrary�sized messages� and then to build a distributed application on top of that service� The
fragmentation protocol is straightforward to implement � one need merely to split the message into
pieces� add fragment serial numbers� and send them one by one� Reliability is more interesting�
requiring a careful analysis and design to be implemented correctly�
The choice of how to complete the project is left up to the students� creativity� We did make a

few suggestions� multi�user UNIX talk� a distributed �le system with caching� a process migration
facility� distributed virtual memory� a gateway protocol that is robust to machine crashes� Perhaps
the most interesting application a student built was a distributed version of the �battleship� game�

with each player on a di�erent machine� This illustrated the role of distributed state� since each
machine kept only its local view of the gameboard� it also exposed several performance problems in
our hardware simulation code which we have since �xed�
Perhaps the biggest limitation of our current implementation is that we do not model network

performance correctly� because we do not keep the timers on each of the Nachos machines synchro�
nized with one another� There are well�known ways of doing this �Chandy � Misra ����� Je�erson
et al� ���
	� but we have not implemented one of them yet� With this� we would have been able to
include a benchmark of the student�s network protocols� it would also allow students to implement
a parallel algorithm �albeit using message�passing� as the �nal part of the project�

� Lessons Learned

Designing and implementing Nachos taught us a lot about how instructional software should be put
together� and provided insights on how students learn about complex systems� In this section� we
discuss some of the lessons that we learned�
In devising the assignments� we had to decide which pieces of the Nachos code to provide students

and which pieces to leave for students to write themselves� At one extreme� we could have provided
students only the hardware simulation routines� leaving a tabula rasa for students to build an entire
operating system from scratch� This seemed impractical� given the scope of what we wanted students
to achieve during the semester�
Thus� when we taught the course for the �rst time� our goal was to provide students with the

mundane and�or technically di�cult parts of the operating system� such as generic list and bitmap
management routines on the one hand� and low level thread context switch code on the other� We
did this by writing the entire operating system from scratch� and then ripping out the parts that we
thought students should write for themselves�
We found� however� that code �if simple enough�� can be very useful at illustrating how some

piece of the operating system should behave� The key is that the code has to be able to run
standalone� without further e�ort on the part of students� Our thread system� although limited�
could show exactly what happens when one thread relinquishes a processor to another thread� By
contrast� when we provided students with less than a working �le system� students had di�culty
understanding how the pieces of the �le system �t together� Similarly� we initially left to students
the de�nition of the system call interface� including how parameters were to be passed from user
code to the kernel� A simple example would have largely eliminated the resulting confusion�
Of course� reading code by itself can be a boring and pointless exercise� we addressed this by

keeping our code as simple as possible� and by asking students to modify it in fairly fundamental
ways� The result is that the assignments focus on the more interesting aspects of operating systems�
where tradeo�s exist so that there is no single right answer�
Another lesson that we learned from using Nachos for a semester was the need to add a quanti�

tative aspect to the assignments� We explicitly encouraged students to implement simple solutions
to the assignments� to avoid sprawling complexity� But because we initially had no standard bench�
marks for measuring the performance of student implementations� we had no counterbalance to show
when complexity was justi�ed� Students tended to devise overly simplistic solutions� where only a
bit more e�ort was needed to be realistic� We hope that the performance tests that we�ve added

�

will encourage students to identify which added complexity is justi�ed by its bene�ts�

� Conclusions

We have written an instructional operating system� called Nachos� It is designed to take advantage
of advances in hardware and software technology� and to illustrate the principles of modern operating
systems� These include concurrency� caching� and distributed computation� We have used Nachos
for one semester in the undergraduate operating systems course at Berkeley� and the results were
positive� We plan to use Nachos in future semesters� and we have made it publicly available in the
hope that others will also �nd it useful�

� Acknowledgements

We would like to thank the Spring ���� CS ��� class at Berkeley for serving as guinea pigs while
Nachos was under development� We would also like to thank Brian Bershad� Ed Lazowska� John
Ousterhout� and Dave Patterson for their very helpful advice during the design of Nachos� John
Ousterhout also wrote the MIPS simulator that we used� We credit Lance Berc with the acronym
for Nachos� Not Another Completely Heuristic Operating System�

References

�Aguirre et al� ����	 Aguirre� G�� Errecalde� M�� Guerrero� R�� Kavka� C�� Leguizamon� G�� Printista�
M�� and Gallard� R� Experiencing MINIX as a Didactical Aid for Operating Systems
Courses� Operating Systems Review� ��������� July �����

�Anderson et al� ����	 Anderson� T�� Lazowska� E�� and Levy� H� The Performance Implications of
Thread Management Alternatives for Shared Memory Multiprocessors� IEEE Transac�

tions on Computers� ����������������� December �����

�Bedichek ���
	 Bedichek� R� Some E�cient Architecture Simulation Techniques� In Proceedings of
the ���� USENIX Winter Conference� pp� ������ January ���
�

�Birrell ����	 Birrell� A� An Introduction to Programming with Threads� Technical Report ���
Digital Equipment Corporation�s Systems Research Center� Palo Alto� California� January
�����

�Chandy � Misra ����	 Chandy� K� and Misra� J� Asynchronous Distributed Simulation via a Se�
quence of Parallel Computations� Communications of the ACM� ������������
�� Novem�
ber �����

�Daley � Dennis ����	 Daley� R� and Dennis� J� Virtual Memory� Processes and Sharing in MUL�
TICS� Communications of the ACM� �������
������ May �����

�

�Dijkstra ����	 Dijkstra� E� On the Cruelty of Really Teaching Computer Science� Communications

of the ACM� ��������������
�� December �����

�Holt ����	 Holt� R� Concurrent Euclid� the UNIX System� and TUNIS� Addison�Wesley� �����

�Je�erson et al� ���
	 Je�erson� D�� Beckman� B�� Wieland� F�� Blume� L�� DiLoreto� M�� Hontabas�
P�� Laroche� P�� Studevant� K�� Tupman� J�� Warren� V�� Wedel� J�� Younger� H�� and
Bellenot� S� Distributed Simulation and the TimeWarp Operating System� In Proceedings
of the ��th ACM Symposium on Operating Systems Principles� pp�

���� November ���
�

�Kane ���
	 Kane� G� MIPS R���� RISC Architecture� Prentice Hall� ���
�

�Lam et al� ����	 Lam� M�� Rothberg� E�� and Wolf� M� The Cache Performance and Optimizations
of Blocked Algorithms� In Proceedings of the �th International Conference on Architectural

Support for Programming Languages and Operating Systems� pp� ���
�� April �����

�Lampson � Redell ���
	 Lampson� B� and Redell� D� Experiences with Processes and Monitors in
Mesa� Communications of the ACM� �������
����
� February ���
�

�Le�er et al� ����	 Le�er� S�� McKusick� K�� Karels� M�� and Quarterman� J� Design and Imple�

mentation of the ��� BSD Unix Operating System� Addison�Wesley� �����

�Levy � Lipman ����	 Levy� H� and Lipman� P� Virtual Memory Management in the VAX�VMS
Operating System� Computer� pp� ������ March �����

�Lions ��

	 Lions� J� A Commentary on the UNIX Operating System� June ��

� Department of
Computer Science� University of New South Wales�

�McKusick et al� ����	 McKusick� M�� Joy� W�� Le�er� S�� and Fabry� R� A Fast File System for
UNIX� ACM Transactions on Computer Systems� �����������
� August �����

�Mealy et al� ����	 Mealy� G�� Witt� B�� and Clark� W� The Functional Structure of OS���
� IBM
Systems Journal� ���������� January �����

�Mundie � Fisher ����	 Mundie� D� and Fisher� D� Parallel Processing in Ada� IEEE Computer

Magazine� �������
���� August �����

�Nelson ����	 Nelson� G�� editor� Systems Programming with Modula��� Prentice Hall� �����

�Patterson ����	 Patterson� D� Has CS Changed in �
 Years! Computing Research News� ���������
March �����

�Ritchie � Thompson ��
�	 Ritchie� D� and Thompson� K� The Unix Time�Sharing System� Com�

munications of the ACM� �
�
�������
�� July ��
��

�Rosenblum � Ousterhout ����	 Rosenblum� M� and Ousterhout� J� The Design and Implementa�
tion of a Log�Structured File System� ACM Transactions on Computer Systems� �
�������
��� February �����

�

�Tanenbaum ���
a	 Tanenbaum� A� Operating Systems	 Design and Implementation� Prentice�Hall�
���
�

�Tanenbaum ���
b	 Tanenbaum� A� A UNIX Clone with Source Code for Operating Systems
Courses� Operating Systems Review� �������
���� January ���
�

�Wulf et al� ��
�	 Wulf� W�� Cohen� E�� Corwin� W�� Jones� A�� Levin� R�� Pierson� C�� and Pollack�
F� HYDRA� The Kernel of a Multiprocessor Operating System� Communications of the

ACM� �
������
����� June ��
��

��

