
 JANUARY 2015 | VOL. 58 | NO. 1 | COMMUNICATIONS OF THE ACM 105

Neural Acceleration for General-
Purpose Approximate Programs
By Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger

DOI:10.1145/2589750

Abstract
As improvements in per-transistor speed and energy
efficiency diminish, radical departures from conventional
approaches are needed to continue improvements in the
performance and energy efficiency of general-purpose pro-
cessors. One such departure is approximate computing,
where error in computation is acceptable and the tradi-
tional robust digital abstraction of near-perfect accuracy is
relaxed. Conventional techniques in energy-efficient com-
puting navigate a design space defined by the two dimen-
sions of performance and energy, and traditionally trade
one for the other. General-purpose approximate computing
explores a third dimension—error—and trades the accuracy
of computation for gains in both energy and performance.
Techniques to harvest large savings from small errors have
proven elusive. This paper describes a new approach that
uses machine learning-based transformations to accelerate
approximation-tolerant programs. The core idea is to train a
learning model how an approximable region of code—code
that can produce imprecise but acceptable results—behaves
and replace the original code region with an efficient com-
putation of the learned model. We use neural networks to
learn code behavior and approximate it. We describe the
Parrot algorithmic transformation, which leverages a sim-
ple programmer annotation (“approximable”) to transform
a code region from a von Neumann model to a neural model.
After the learning phase, the compiler replaces the original
code with an invocation of a low-power accelerator called a
neural processing unit (NPU). The NPU is tightly coupled to
the processor pipeline to permit profitable acceleration even
when small regions of code are transformed. Offloading
approximable code regions to NPUs is faster and more
energy efficient than executing the original code. For a set
of diverse applications, NPU acceleration provides whole-
application speedup of 2.3× and energy savings of 3.0× on
average with average quality loss of at most 9.6%. NPUs form
a new class of accelerators and show that significant gains
in both performance and efficiency are achievable when the
traditional abstraction of near-perfect accuracy is relaxed in
general-purpose computing.

1. INTRODUCTION
It is widely understood that energy efficiency now funda-
mentally limits microprocessor performance gains. CMOS
scaling is no longer providing gains in efficiency commen-
surate with transistor density increases.7, 15 As a result, both
the semiconductor industry and the research community
are increasingly focusing on specialized accelerators, which
can provide large gains in efficiency and performance by

restricting the workloads that benefit. Recent work has
quantified three orders of magnitude of difference in effi-
ciency between general-purpose processors and ASICs.14
The community is facing an “iron triangle” in this respect;
we can choose any two of performance, energy efficiency,
and generality at the expense of the third. Before the tradi-
tional trend of transistor scaling—Dennard scaling5—broke
down, we were able to improve all three on a consistent basis
for decades. In this post Dennard scaling era, solutions that
improve performance and efficiency while retaining as
much generality as possible are highly desirable; hence the
exploding interest in GPGPUs and FPGAs. Such programma-
ble accelerators exploit some characteristic of an application
domain to achieve efficiency gains at the cost of general-
ity. FPGAs, for example, exploit copious, fine-grained, and
irregular parallelism while GPUs exploit many threads and
data-level SIMD-style parallelism. Whether an application
can use an accelerator effectively depends on the degree to
which it exhibits the accelerator’s required characteristics.

Tolerance to approximation is one such program char-
acteristic. A growing body of recent work2, 4, 8, 19, 26, 27 has
focused on approximation as a strategy for improving effi-
ciency. Large classes of applications can tolerate small
errors in their outputs with no discernible loss in their
quality of result (QoR). These applications are common in
mobile, embedded, and server systems and fall into four
broad categories:

1. Applications with analog inputs. This category includes
image processing, sensor data processing, voice recog-
nition, etc., that operate on noisy real-world data. They
are inherently resilient to some noise and can handle
an “extra noise” resulting from approximation.

2. Applications with analog output. These applications
comprise multimedia, image rendering, sound syn-
thesis, etc. Their output is intended for human percep-
tion and can inherently tolerate errors imperceptible
to users.

3. Applications with no unique answer. This class of appli-
cations includes web search, machine learning, auton-
omous agents, etc., which do not offer a unique answer
and multiple possible answers are acceptable.

A previous version of this article appeared in Proceedings
of the 45th Symposium on Microarchitecture (December
2012). Parts of this article appeared in IEEE Micro Top
Picks from the Computer Architecture Conferences of 2012
(May/June 2013).

http://doi.acm.org/10.1145/2589750

106 COMMUNICATIONS OF THE ACM | JANUARY 2015 | VOL. 58 | NO. 1

research highlights

4. Iterative and convergent applications. This category
includes applications such as data analytics and numer-
ical computations that iteratively process large amounts
of data. They often sample data, stop the convergence
procedure early, or apply approximate heuristics. Thus,
these applications can naturally benefit from approxi-
mation techniques.

For these classes of applications, trading off computation
accuracy can potentially lead to larger gains in performance
and efficiency. One may visualize these trade-offs as finding
the Pareto-optimal points in the processor design space, as
shown in Figure 1. Traditionally, for any set of workloads,
the set of possible processor implementations may be plot-
ted, with energy efficiency on one axis and performance
on the other, and the best implementations residing on
the two-dimensional frontier. When approximation is sup-
ported, the degree of permissible error represents a third
axis. The Pareto surface in this three-dimensional space rep-
resents the best points of performance, efficiency, and error.
However, this surface is not yet well understood.

This paper defines some new points on this Pareto sur-
face by developing a new class of programmable accelera-
tors that exploit approximation for better performance and
energy efficiency. The core idea is to learn how a region of
approximable code behaves and automatically replace the
original code with an efficient computation of the learned
model. This approach contrasts with previous work on
approximate computation that extends conventional
microarchitectures to support selective approximate execu-
tion, incurring instruction bookkeeping overheads4, 8, 19 or
requires vastly different programming paradigms.2, 21 Like
emerging flexible accelerators,11, 12, 29 our technique auto-
matically offloads code segments from programs written in
mainstream languages. However, unlike prior work, it lever-
ages changes in the semantics of the offloaded code and the
nature of computation. Such changes are possible because
the transformed code region is approximable and can toler-
ate small errors.

NPU-enabled systems rely on our learning-based algo-
rithmic transformation that we refer to as the Parrot
transformationa. This transformation converts regions
of approximable general-purpose code into a neural rep-
resentation—specifically, multilayer perceptrons—at
compile time. At run time, while the processor executes
the program, it invokes the NPU instead of running the
original region of code. NPUs result in large performance
and efficiency gains, since they subsume a region of code,
eliminating nearly all of the instruction fetch, decode,
etc., overheads that would have been incurred if that
region was executed on the processor. These overheads
are replaced by a single, efficient invocation of neural
hardware that exploits hard-wired control for additional
efficiency. As illustrated in Figure 2, NPU acceleration pro-
vides improved generality over task-specific accelerators,
as the Parrot transformation converts many distinct code
patterns into a common representation that can be run
on a single physical accelerator. In fact, our Parrot algo-
rithmic transformation replaces unstructured serial code
with a neural network that has structured fine grain paral-
lelism that is executed on an efficient statically scheduled
hardware structure, the NPU. Therefore, converting diverse
regions of code to the common neural representation
can lead to significant performance and efficiency gains
because neural networks consist of simple, regular, and
parallel operations.

We show that using neural networks to replace regions of
imperative code is both feasible and profitable by accelerat-
ing a diverse range of applications, including FFT, gaming,
clustering, and vision algorithms (Section 6). These applica-
tions do not belong to the class of modeling and prediction
tasks that typically use neural networks. For each application,
we apply the transformation on a single approximable func-
tion that dominates the program’s execution time. NPU accel-
eration provides 2.3× average whole-application speedup
and 3.0× average energy savings for these benchmarks with
average accuracy greater than 90% in all cases.

Performance

E
ne

rg
y

Pareto Frontier
Processor

Erro
r

Figure 1. Adding the dimension of error to the design space of
general-purpose processors changes the problem of finding the
Pareto frontier to finding the Pareto surface. Navigating this three-
dimensional space, finding, and understanding this Pareto surface is
a fascinating research direction.

Neural
Representation

Code1 Code2 Code3 Code4 Code5 Code6

CPU NPU

Source
Codes

Common
Intermediate

Representation

Acceleration

+
¥

Figure 2. The Parrot algorithmic transformation converts different
regions of code to a common neural intermediate representation.
Neural networks as a common representation enable acceleration of
diverse applications using a single physical NPU.

a We named our algorithmic transformation, the Parrot transformation
 because its output is a learning model that mimics the original region of code.

 JANUARY 2015 | VOL. 58 | NO. 1 | COMMUNICATIONS OF THE ACM 107

The Parrot algorithmic transformation and the NPU
acceleration bridge von Neumann and neural models
of computing. These techniques make neural hardware
programmable via conventional programming languages
and extend their use beyond prediction and modeling to
accelerating general-purpose code. The results from this
paper show that when the traditional abstraction of near-
perfect accuracy is relaxed, different models of comput-
ing can be merged to obtain large gains in performance
and efficiency.

2. OVERVIEW
As depicted in Figure 3, the Parrot transformation is an
algorithmic transformation that converts regions of
imperative code to neural networks. Because neural net-
works expose considerable parallelism and consist of
simple operations, they can be efficiently accelerated
using dedicated hardware. Therefore, the Parrot trans-
formation can yield significant performance and energy
improvements. The transformation uses a training-based
approach to produce a neural network that approximates
the behavior of candidate code. A transformed program
runs primarily on the main core and invokes an auxiliary
hardware structure, the NPU, to perform neural evaluation
instead of executing the replaced code. Figure 3 shows an
overview of the Parrot algorithmic transformation, which
has three key phases: programming, in which the pro-
grammer marks code regions to be transformed; compila-
tion, in which the compiler selects and trains a suitable
neural network and replaces the original code with a neu-
ral network invocation; and execution.

Programming. The Parrot transformation starts with the
programmer identifying candidate code regions as approx-
imable. Because tolerance of approximation is a semantic
property, it is the programmer’s responsibility to select code
whose approximate execution would not compromise the
overall reliability of the application. This requirement is a com-
mon practice in the approximate computing literature.4, 8, 26

Compilation. Once the source code is annotated, as
shown in Figure 3, the compiler applies the Parrot transfor-
mation in three steps: (1) code observation, (2) neural net-
work selection and training, and (3) binary generation.

Training neural networks for any task requires a col-
lection of input–output pairs that capture the task’s

function. Therefore, in the code observation step, the com-
piler observes the behavior of the candidate code region by
logging its inputs and outputs. This step is similar to pro-
filing. The compiler instruments the program with probes
on the inputs and outputs of the candidate functions. Then,
the instrumented program is run using representative input
sets such as those from a test suite. The probes log the
inputs and outputs of the candidate functions. The logged
input–output pairs constitute the training and validation
data for the next step.

The compiler uses the collected input–output data to
configure and train a neural network that mimics the can-
didate region. The compiler must find the simplest topol-
ogy of the neural network that provides acceptable error, for
which more complex networks would provide diminishing
returns in QoR. The compiler also needs to find the syn-
aptic weights of the network. It uses the backpropagation
algorithm25 coupled with a topology search to configure and
train the neural network.

The final step of the Parrot transformation is code gen-
eration. The compiler first generates a configuration for the
NPU that implements the trained neural network. Then, the
compiler replaces each call to the original function with a
series of special instructions that invoke the NPU, sending
the inputs and receiving the computed outputs. The NPU
configuration and invocation is performed through ISA
extensions that are added to the core.

Execution. During deployment, the transformed pro-
gram begins execution on the main core and configures
the NPU. Throughout execution, the NPU is invoked to
perform a neural network evaluation in lieu of executing
the original code region. The NPU is integrated as a tightly
coupled accelerator in the processor pipeline. Invoking
the NPU is faster and more energy efficient than execut-
ing the original code region, so the program as a whole is
accelerated.

As Figure 4 shows, many NPU implementations are fea-
sible, from all-software execution to specialized analog
circuits. Because the Parrot transformation’s effective-
ness rests on the efficiency of neural network evaluation,
it is essential that invoking the NPU be fast and low power.
Therefore, we describe a high-performance hardware NPU
design based on a digital neural network ASIC and architec-
ture support to facilitate low-latency NPU invocations.

Imperative
Source
Code

Annotated
Source
CodeProgrammer

Input
Data

Processor

Training
Inputs Trainer

(Topology &
Synaptic
Weights)

Trained
Neural

Network

Code
Generator

Instrumented
CPU Binary

Core

NPU

Programming Code Observation Training Code Generation

NPU Config

Execution

Compilation

Figure 3. The Parrot transformation at a glance: from annotated code to accelerated execution on an NPU-augmented core.

research highlights

108 COMMUNICATIONS OF THE ACM | JANUARY 2015 | VOL. 58 | NO. 1

3. PROGRAMMING MODEL
The Parrot transformation starts with the programmer iden-
tifying candidate code regions. This section discusses these
criteria as well as the concrete language interface exposed to
the programmer. After the candidate regions are identified,
the Parrot transformation is fully automated.

3.1. Code region criteria
Candidate code for the Parrot transformation must satisfy
three criteria: it must be frequently executed (i.e., a “hot”
function); it must tolerate imprecision in its computation;
and it must have well-defined inputs and outputs.

Hot code. Like any acceleration technique, the Parrot
transformation should replace hot code. The Parrot trans-
formation can be applied to a wide range of code from small
functions to entire algorithms. The code region can contain
function calls, loops, and complex control flow whose cost

can be elided by the Parrot transformation. When applied
to smaller regions of code, the overhead of NPU invocation
needs to be low to make the transformation profitable. A tra-
ditional performance profiler can reveal hot code.

For example, edge detection is a widely applicable
image processing computation. Many implementations of
edge detection use the Sobel filter, a 3 × 3 matrix convolu-
tion that approximates the image’s intensity gradient. As
the bottom box in Figure 5a shows, the local Sobel filter
computation (the sobel function) is executed many times
during edge detection, so the convolution is a hot func-
tion in the overall algorithm and a good candidate for the
Parrot transformation.

Approximability. Code regions identified for the Parrot
transformation will behave approximately during execution.
Therefore, programs must incorporate application-level
tolerance of imprecision. This requires the programmer to
ensure that imprecise results from candidate regions will
not cause catastrophic failures. As prior work on approxi-
mate programming1, 4, 19, 26, 27 has shown, it is not difficult to
deem regions approximable.

Beyond determining that a code region may safely pro-
duce imprecise results, the programmer need not reason
about the mapping between the code and a neural network.
While neural networks are more precise for some functions
than they are for others, we find that they can accurately
mimic many functions from real programs (see Section 6).
Intuitively, however, they are less likely to effectively approxi-
mate chaotic functions, in which even large training sets can
fail to capture enough of the function’s behavior to general-
ize to new inputs. However, the efficacy of neural network
approximation can be assessed empirically. The program-
mer should annotate all approximate code; the compiler
can then assess the accuracy of a trained neural network in

CPU NPU

CPU GPU FPGA
Digital
ASIC

FPAA
Analog
ASIC

Figure 4. Design space of NPU implementations. This work focuses
on a precise digital ASIC design.

p[1][2]

1
float

3 x = (p[0][0] + 2 ∗ p[0][1] + p[0][2]);
x += (p[2][0] + 2 ∗ p[2][1] + p[2][2]);

5 y = (p[0][2] + 2 ∗ p[1][2] + p[2][2]);
y += (p[0][0] + 2 ∗ p[1][1] + p[2][0]);

7 r = sqrt (x ∗ x + y ∗ y);
if (r >= 0.7071) r = 0.7070;

9 return r;
}

2
for (int y = 0; y < srcImg.height; ++y)

4 for (int x = 0; x < srcImg.width; ++x)
srcImg.toGrayeScale(x,y);

6 for (int y = 0; y < srcImg.height; ++y)
for (int x = 0; x < scrImg.width; ++x){

8 p = srcImg.build3x3Window(x, y);

10 dstImg.setPixel(x, y, pixel);
}

12 }

p[0][0]

p[1][0]

p[2][0]

p[0][1]

p[1][1]

p[2][1]

p[0][2]

p[2][2]

...

r
Input Layer Hidden Layer Output Layer

(b)

2

4
srcImg.toGrayeScale(x, y);

6 for (int y = 0; y < srcImg.height; ++y)
for (int x = 0; x < scrImg.width; ++x){

8 p = srcImg.build3x3Window(x, y);
NPU_SEND(p[0][0]); NPU_SEND(p[0][1]); NPU_SEND(p[0][2]);

10 NPU_SEND(p[1][0]); NPU_SEND(p[1][1]); NPU_SEND(p[1][2]);
NPU_SEND(p[2][0]); NPU_SEND(p[2][1]); NPU_SEND(p[2][2]);

12 NPU_RECEIVE(pixel);
dstImg.setPixel(x, y, pixel);

14 }
}

(c)

1
float x, y, r;

3

5

7

9

void edgeDetection (Image& srcImg, Image& dstImg){
2 float [3][3] p; float pixel;

4

6

8

10

12

(a)

void edgeDetection (Image& srcImg, Image& dstImg){
2 float [3][3] p; float pixel;

for (int y = 0; y < srcImg.height; ++y)
4 for (int x = 0; x < srcImg.width; ++x)

6

8

10

12

14 }
}

float sobel [[approximable]] (float[3][3] p){

pixel = sobel(p);

Figure 5. Three stages in the transformation of an edge detection algorithm using the Sobel filter: (a) original implementation of the Sobel
filter, (b) sobel function transformed to a 9 Æ 8 Æ 1 NN, and (c) Parrot transformed code; NPU invocation replaces the function call.

 JANUARY 2015 | VOL. 58 | NO. 1 | COMMUNICATIONS OF THE ACM 109

4.1. Code observation
Training neural networks for any task requires a collec-
tion of input–output pairs that capture the task’s function.
Therefore, in the first phase, the compiler collects input–
output pairs for the target code that reflect real program exe-
cutions. This in-context observation allows the compiler to
train the neural network on a realistic data set. The compiler
produces an instrumented binary for the source program
that includes probes on the input and output of the anno-
tated function. Each time the candidate function executes,
the probes record its inputs and outputs. The program is
run repeatedly using test inputs. The output of this phase
is a training data set: each input–output pair represents a
sample for the training algorithm.

The observation phase resembles the profiling runs used
in profile-guided compilation. Specifically, it requires rep-
resentative test inputs for the application. The inputs may
be part of an existing test suite or randomly generated. In
many cases, a small number of application test inputs are
sufficient to train a neural network because the candidate
function is executed many times in a single application run.

4.2. Training
The compiler uses the training data to produce a neural net-
work that replaces the original function. There are a variety
of types of artificial neural networks in the literature, but we
narrow the search space to multilayer perceptrons (MLPs)
due to their broad applicability.

The compiler uses the backpropagation algorithm25 to
train the neural network. Backpropagation is a gradient
descent algorithm that iteratively adjusts the weights of the
neural network according to each input–output pair.

Neural network topology selection. In addition to run-
ning backpropagation, this phase selects a network topol-
ogy that balances accuracy and efficiency. An MLP consists
of a fully connected set of neurons organized into layers:
the input layer, any number of “hidden” layers, and the
output layer. A larger, more complex network offers better
accuracy potential but is likely to be slower and less power
efficient than a small, simple neural network. The objec-
tive is to find the smallest neural network that achieves
acceptable accuracy.

To choose the topology, we use a simple search algo-
rithm guided by the mean squared error of the neural
network when tested on an unseen subset of the observed
data. The error evaluation uses a typical cross-validation
approach: the compiler partitions the data collected dur-
ing observation into a training set, 70% of the observed
data, and a test set, the remaining 30%. The topology search
algorithm trains many different neural network topologies
using the training set and chooses the one with the highest
accuracy on the test set and the lowest latency on the NPU
(prioritizing accuracy).

The output from this phase consists of a neural network
topology—specifying the number of layers and the number
of neurons in each layer—along with the weight for each neu-
ron and the normalization range for each input and output.

Online training. The current system performs obser-
vation and training prior to deployment; an alternative

replacing each function and select only those functions for
which neural networks are a good match.

In the Sobel filter example, parts of the code that process
the pixels can be approximated. The code region that com-
putes pixel addresses and builds the window for the sobel
function (line 8 in the bottom box of Figure 5a) needs to be
precise to avoid memory access violations. However, the sobel
function, which estimates the intensity gradient of a pixel, is
fundamentally approximate. Thus, approximate execution of
this function will not result in catastrophic failure and, more-
over, is unlikely to cause major degradation of the overall
edge detection quality. These properties make the sobel func-
tion a suitable candidate region for approximate execution.

Well-defined inputs and outputs. The Parrot transforma-
tion replaces a region of code with a neural network that has
a fixed number of inputs and outputs. Therefore, it imposes
two restrictions on the code regions that can feasibly be
replaced. First, the inputs to and outputs from the candidate
region must be of a fixed size known at compile time. For
example, the code may not dynamically write an unbounded
amount of data to a variable-length array. Second, the code
must not cause side effects via system calls. These two crite-
ria can be checked statically.

The sobel function in Figure 5a complies with these
requirements. It takes nine statically identifiable floating-
point numbers as input, produces a single output, and has
no side effects.

3.2. Annotation
In this work, we apply the Parrot transformation to entire
functions. To identify candidate functions, the programmer
marks them with an annotation (e.g., using C++11 [[approx-
imble]] syntax) as shown in Figure 5a. The programmer is
responsible for ensuring that the function has well-defined
inputs and outputs. All the inputs are in the argument list and
all the outputs are part of the return value. Each argument
type and the return type must have a fixed size; however, they
may have multiple elements, for example, fixed-size array or
a record. If any of these types is a pointer type, it must point
to a fixed-size value; this referenced value is then considered
the neural network input or output rather than the pointer
itself. If the function needs to return multiple values, it can
return a fixed-size array or a C struct. After the programmer
annotates the candidate functions, the Parrot transforma-
tion is completely automatic and transparent: no further
programmer intervention is necessary.

Like prior work on approximate computing, we acknowl-
edge that some programmer guidance is essential when
identifying error-tolerant code.1, 4, 8, 19 , 26 Tolerance to approx-
imation is an inherently application-specific property. While
we find that the simple explicit function annotations are
straightforward to apply (see Section 6), static analysis tech-
niques could be used to further simplify the annotation pro-
cess and significantly automate it.

4. COMPILATION WORKFLOW
Once the program has been annotated, the compilation work-
flow implements the Parrot transformation in three steps:
observation, training, and instrumented binary generation.

research highlights

110 COMMUNICATIONS OF THE ACM | JANUARY 2015 | VOL. 58 | NO. 1

5.2. Neural processing unit
As Figure 4 illustrates, there are many possibilities for
the implementation of the NPU itself. Neural networks
have previously been implemented in software on the CPU
or GPU,13 on FPGAs,30 in digital ASICs,6 and even in ana-
log circuitry or FPAAs.17 As shown in Figure 6, we designed
a reconfigurable digital NPU circuit that operates at the
same voltage and frequency as the main core. More details
on our NPU design can be found in Esmaeilzadeh et al.9
This implementation represents a reasonable trade-off
between efficiency and complexity. However, we believe
that analog NPUs have significant potential and we plan to
explore them in future work.

The Parrot transformation produces different neural
network topologies for different code regions. Thus, our
reconfigurable NPU accelerates the evaluation of a range
of neural topologies. As shown in Figure 6, the NPU contains
eight identical processing engines (PEs) and one scaling
unit. The scaling unit scales the neural network’s inputs
and outputs if necessary using scaling factors defined in
the NPU configuration process.

The PEs in the NPU are statically scheduled. The
scheduling information is part of the configuration
information for the NPU, which is based on the neural
network topology derived during the training process. In
the NPU’s schedule, each neuron in the neural network
is assigned to one of the eight PEs. The neural network’s
topology determines a static schedule for the timing of
the PE computations, bus accesses, and queue accesses.

design could train the neural network concurrently with
in vivo operation. Online training could improve accuracy
but would result in runtime overheads. To address these
overheads, an online training system could offload neu-
ral network training and configuration to a remote server.
With off-site training, multiple deployed application
instances could centralize their training to increase input
space coverage.

4.3. Code generation
After the training phase, the compiler generates an instru-
mented binary that runs on the core and invokes the NPU
instead of calling the original function. The program config-
ures the NPU when it is first loaded by sending the topology
parameters and synaptic weights to the NPU. The compiler
replaces the calls to the original function with special instruc-
tions that send the inputs to the NPU and collect the outputs
from it.

5. ARCHITECTURE DESIGN FOR NPU ACCELERATION
Since candidate regions for the Parrot transformation can
be fine grained, NPU invocation must be low-overhead to
be beneficial. Ideally, the NPU should integrate tightly with
the processor pipeline. The processor ISA also needs to be
extended to allow programs to configure and invoke the
NPU during execution.

5.1. ISA support for NPU acceleration
The NPU is a variable-delay, tightly coupled accelerator that
communicates with the rest of the core via FIFO queues.
The CPU–NPU interface consists of three queues: one for
sending and retrieving the configuration, one for sending
the inputs, and one for retrieving the neural network’s out-
puts. The ISA is extended with four instructions to access
the queues. These instructions assume that the processor
is equipped with a single NPU; if the architecture supports
multiple NPUs or multiple stored configurations per NPU,
the instructions may be parameterized with an operand that
identifies the target NPU.

• enq.c %r: enqueues the value of the register r into the
config FIFO.

• deq.c %r: dequeues a configuration value from the con-
fig FIFO to the register r.

• enq.d %r: enqueues the value of the register r into the
input FIFO.

• deq.d %r: dequeues the head of the output FIFO to the
register r.

To set up the NPU, the program executes a series of enq.c
instructions to send configuration parameters—number of
inputs and outputs, network topology, and synaptic weights—
to the NPU. The operating system uses deq.c instructions
to save the NPU configuration during context switches. To
invoke the NPU, the program executes enq.d repeatedly to send
inputs to the configured neural network. As soon as all of the
inputs of the neural network are enqueued, the NPU starts
computation and puts the results in its output FIFO. The pro-
gram executes deq.d repeatedly to retrieve the output values.

Figure 6. Reconfigurable 8-PE NPU: (a) 8-PE NPU, (b) single
processing engine (PE), and (c) design parameters of the NPU.

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Bus
Scheduler

Scheduling BufferConfig FIFO

Output FIFO

Input FIFO
Scaling

Unit

(a)

Sigmoid
Unit

Weight Buffer

Output Register File

Input FIFO

Controller

Accumulator
Registers

(b)

Parameter Configuration

Number of PEs 8
Bus Schedule FIFO 512 × 20-bit
Input FIFO 128 × 32-bit
Output FIFO 128 × 32-bit
Config FIFO 8 × 32-bit

512 × 33-bit
8 × 32-bit
8 × 32-bit

128 × 32-bit

PE Weight Cache
PE Input FIFO
PE Output Register File
Sigmoid Unit LUT
Multiply–Add Unit 32-bit Single Precision FP

(c)

Multiply–Add
Unit

 JANUARY 2015 | VOL. 58 | NO. 1 | COMMUNICATIONS OF THE ACM 111

The NPU stores the bus scheduling information in its
circular scheduling buffer (shown in Figure 6). Figure 6b
shows the internal structure of a single PE. Each PE per-
forms the computation for all of its assigned neurons.
Namely, because the NPU implements a sigmoid-activa-
tion MLP, each neuron computes its output as y = sig-
moid (Si(xi × wi)), where xi is an input to the neuron and
wi is its corresponding weight. The weight buffer, a cir-
cular buffer, stores the weights. When a PE receives an
input from the bus, it stores the value in its input FIFO.
When the neuron weights for each PE are configured,
they are placed into the weight buffer; the compiler-
directed schedule ensures that the inputs arrive in the
same order that their corresponding weights appear in
the buffer. This way, the PE can perform multiply-and-
add operations in the order the inputs enter the PE’s
input FIFO.

Since the computation of the neural network requires
only simple operations that are limited to multiply–add
and sigmoid lookup, the structure of the PEs is fairly
simple. Furthermore, neural network computation
exposes fine grain regular parallelism that we exploited
in our NPU design by including multiple identical PEs.
In fact, our Parrot algorithmic transformation replaces
unstructured serial code with a neural network that has
structured fine grain parallelism that is executed on an
efficient statically scheduled hardware structure, NPU.

6. EVALUATION
To evaluate the effectiveness of the Parrot transformation,
we apply it to several benchmarks from diverse application
domains. For each benchmark, we identify a region of code
that is amenable to the Parrot transformation. We evaluate
whole-application speedup and energy savings using cycle-
accurate simulation and a power model. We also examine
the resulting trade-off in computation accuracy. We refer the
reader to the original paper for more details on the evaluation.9

6.1. Benchmarks
Table 1 lists the approximation-tolerant applications from
diverse domains that are used to evaluate the broad applica-
bility of our technique. These benchmarks are all written in C.
The application domains—signal processing, robotics, gaming,
compression, machine learning, and image processing—are
selected for their usefulness to general applications and toler-
ance to imprecision. The domains are commensurate with eval-
uations of previous work on approximate computing.8, 19, 26,

27 To be able to assess the effect of the Parrot transformation
perceptually, we selected a number of benchmarks that gener-
ate image outputs and compared the output image with and
without the transformation. We did not reject any of the appli-
cations based on performance, energy, or accuracy shortfalls.

Table 1 also lists the input sets used for performance,
energy, and accuracy assessment. These input sets are dif-
ferent from the ones used during the training phase of

Table 1. The benchmarks evaluated, details for each transformed function, input data, and the result of the Parrot transformation.

Description Type
Evaluation
input set

No. of
function

calls
No. of
loops

No.
of

ifs/
elses

No. of
×86-64
instruc-

tions
Training
input set

Neural
network
topology

NN
MSE

Error
metric Error

fft Radix-2
Cooley-
Tukey fast
Fourier

Signal
processing

2048 ran-
dom float-
ing-point
numbers

2 0 0 34 32,768
random
float-
ing-point
numbers

1 ® 4 ®
4 ® 2

0.00002 Average
relative
error

7.22%

inversek2j Inverse
kinematics
for two-joint
arm

Robotics 10,000 (x, y)
random
coordinates

4 0 0 100 10,000
(x, y)
random
coordinates

2 ® 8
® 2

0.00563 Average
relative
error

7.50%

jmeint Triangle
intersection
detection

3D gaming 10,000 ran-
dom pairs of
3D triangle
coordinates

32 0 23 1079 100,000
random
pairs of 3D
triangle
coordinates

18 ® 32
® 8 ® 2

0.00530 Miss
rate

7.32%

jpeg JPEG
encoding

Compression 220 × 200-
pixel color
image

3 4 0 1257 Three 512
× 512-pixel
color
images

64 ® 16
® 64

0.00890 Image
differ-
ence

9.56%

kmeans K-means
clustering

Machine
learning

220 × 200-
pixel color
image

1 0 0 26 50,000
pairs of
random (r,
g, b) values

6 ® 8 ®
4 ® 1

0.00169 Image
differ-
ence

6.18%

sobel Sobel edge
detector

Image
processing

220 × 200-
pixel color
image

3 2 1 88 One 512 ×
512-pixel
color
image

9 ® 8
® 1

0.00234 Image
differ-
ence

3.44%

research highlights

112 COMMUNICATIONS OF THE ACM | JANUARY 2015 | VOL. 58 | NO. 1

6.2. Experimental setup
Simulation. We use the MARSSx86 cycle-accurate x86-64
simulator22 to evaluate the performance effect of the Parrot
transformation and NPU acceleration. We configure the
simulator to resemble Intel’s Penryn microarchitectureb,
which is an aggressive out-of-order design. We augment
MARSSx86 with a cycle-accurate NPU simulator and add
support for NPU queue instructions through unused x86
opcodes. We use C assembly inlining to add the NPU invoca-
tion code. We compile the benchmarks using GCC version
4.4.6 with the -O3 flag to enable aggressive compiler opti-
mizations. The baseline in all of the reported results is the
execution of the entire benchmark on the core without the
Parrot transformation.

Energy modeling. MARSSx86 generates an event log
dur ing the cycle-accurate simulation of the program.
The result ing statistics are sent to a modified version
of McPAT18 to estimate the energy consumption of each
execution. We model the energy consumption of an 8-PE
NPU using the results from McPAT and CACTI 6.520 for
memory arrays, buses, and steering logic. We use the
results from Galal and Horowitz10 to estimate the energy
of multiply-and-add operations. We model the NPU and
the core at the 45 nm technology node. The NPU oper-
ates at the same frequency and voltage as the main core.
We use the 2080 MHz frequency and Vdd = 0.9 V settings
because the energy results in Galal and Horowitz10 use
this frequency and voltage setting.

6.3. Experimental results
Figure 7a shows the application speedup when an 8-PE
NPU is used to replace each benchmark’s target func-
tion. The rest of the code runs on the core. The base-
line is executing the entire, untransformed benchmark
on the CPU. The plots also show the potential available
speedup: the hypothetical speedup if the NPU takes
zero cycles for computation. Among the benchmarks,
inversek2j sees the highest speedup (11.1×) since the
Parrot transformation substitutes the bulk of the appli-
cation with a relatively small NN (2 ® 8 ® 2). On the
other hand, kmeans sees a 24% slowdown even though it
shows a potential speedup of 20% in the limit. The trans-
formed region of code in kmeans consists of 26 mostly
arithmetic instructions that can efficiently run on the
core while the NN (6 ® 8 ® 4 ® 1) for this benchmark is
comparatively complex and involves more computation
(84 multiply–adds and 12 sigmoids) than the original
code. On average, the benchmarks see a speedup of 2.3×
through NPU acceleration.

Figure 7b shows the energy reduction for each bench-
mark. The baseline is the energy consumed by running
the entire benchmark on the unmodified CPU and the
ideal energy savings for a hypothetical zero-energy NPU.
The Parrot transformation elides the execution of signifi-
cant portion of dynamic instructions that otherwise would
go through power-hungry stages of the OoO pipeline. The
reduction in the number of dynamic instructions and the
energy-efficient design of the NPU yield a 3.0× average appli-
cation energy reduction.

the Parrot transformation. For applications with random
inputs, we use a different random input set. For applications
with image input, we use a different image.

Code annotation. The C source code for each benchmark
was annotated as described in Section 2: we identified a
single pure function with fixed-size inputs and outputs. No
algorithmic changes were made to the benchmarks to accom-
modate the Parrot transformation. There are many choices
for the selection of target code and, for some programs, mul-
tiple NPUs may even have been beneficial. For the purposes
of this evaluation, however, we selected a single target region
per benchmark that was easy to identify, frequently executed
as to allow for efficiency gains, and amenable to learning by a
neural network. Qualitatively, we found it straightforward to
identify a reasonable candidate function in each benchmark.

As shown in Table 1, in most of the benchmarks we
examined, the target code contains complex control flow
including conditionals, loops, and method calls. In jmeint,
the target code contains the bulk of the algorithm, includ-
ing many nested method calls and numerous conditionals.
In jpeg, the transformation subsumes the discrete cosine
transform and quantization phases, which contain function
calls and loops. In fft, inversek2j, and sobel, the target code
consists mainly of arithmetic operations and simpler control
flow. In kmeans, the target code is the Euclidean distance
calculation, which is simple and fine grained yet frequently
executed. In each case, the target code is side-effect-free and
the number of inputs/outputs is statically identifiable.

Training data. To train the NPU for each application, we
have used either (1) typical program inputs (e.g., sample
images) or (2) a limited number of random inputs. For the
benchmarks that use random inputs, we determined the
permissible range of parameters in the code and gener-
ated uniform random inputs in that range. For the image-
based benchmarks, we used three standard images that
are used to evaluate image processing algorithms. For
kmeans, we supplied random inputs to the code region to
avoid overtraining on a particular test image.

Output quality. We use an application-specific error met-
ric to assess the QoR for each benchmark. In all cases, we
compare the output of the original untransformed appli-
cation to the output of the transformed application. For fft
and inversek2j, which generate numeric outputs, we mea-
sure the average relative error. jmeint calculates whether
two three-dimensional triangles intersect; we report the
misclassification rate. For jpeg, kmeans, and sobel, which
produce image outputs, we use the average root-mean-
square image difference.

As the last column of Table 1 shows, application average
error rates range from 3% to 10%. This QoR loss is commen-
surate with other work on quality trade-offs.1, 8, 26

b Processor: Fetch/Issue Width: 4/6, INT ALUs/FPUs: 3/2, Load/Store FUs: 2/2,
ROB Entries: 96, Issue Queue Entries: 32, INT/FP Physical Registers: 256/256,
Branch Predictor: Tournament 48KB, BTB Sets/Ways: 1024/4, RAS Entries:
64, Load/Store Queue Entries: 48/48, Dependence Predictor: 4096-entry
Bloom Filter, ITLB/DTLB Entries: 128/256, L1: 32KB Instruction, 32KB Data,
Line Width: 64 bytes, 8-Way, Latency: 3 cycles, L2: 2MB, Line Width 64 bytes,
8-Way, Latency: 12 cycles, Memory Latency: 50 ns (104 cycles).

 JANUARY 2015 | VOL. 58 | NO. 1 | COMMUNICATIONS OF THE ACM 113

a collection of elements—an image consists of pixels, a
vector consists of scalars, etc. The error CDF reveals the
distribution of output errors among an application’s out-
put elements and shows that very few output elements see
large quality loss. The majority (80–100%) of each trans-
formed application’s output elements have error less
than 10%.

7. RELATED WORK
This work represents a convergence of three main bod-
ies of research: approximate computing, general-purpose
configurable acceleration, and hardware neural net-
works. Fundamentally, the Parrot transformation lever-
ages hardware neural networks to create a new class of
configurable accelerators for approximate programs.

Approximate computing. Prior work has explored
relaxed hardware semantics and their impact on applica-
tions with “soft” output requirements, both as (1) exten-
sions to traditional architectures4, 8, 19 and (2) in the form
of fully approximate processing units.2, 21 In contrast, NPUs
accelerate coarse-grained blocks of code in larger applica-
tions. No special code must be written to take advantage
of the approximate unit; only lightweight annotation is
required. Some work has also exposed relaxed semantics
in the programming language to give programmers con-
trol over the precision of software.1, 4, 26 As an implementa-
tion of approximate semantics, the Parrot transformation
dovetails with these programming models.

General-purpose configurable acceleration. The Parrot
transformation extends prior work on configurable comput-
ing, synthesis, specialization, and acceleration that focuses
on compiling traditional, imperative code for efficient hard-
ware structures. One research direction seeks to synthesize
efficient circuits or configure FPGAs to accelerate general-
purpose code.23, 24 Similarly, static specialization has shown
significant efficiency gains for irregular and legacy code.29
More recently, configurable accelerators have been proposed
that allow the main CPU to offload certain code to a small,
efficient structure.11, 12 This work differs in its focus on accel-
erating approximate code. NPUs represent an opportunity to
go beyond the efficiency gains that are possible when strict
correctness is not required.

Neural networks. There is an extensive body of work on
hardware implementation of neural networks (neural hard-
ware) both digital6 and analog.17 Other work has examined
the fault tolerance of hardware neural networks.16, 28 A recent
study3 showed that 5 of 13 applications from the PARSEC
suite can be manually reimplemented to make use of vari-
ous kinds of neural networks.

8. LIMITATIONS AND FUTURE DIRECTIONS
Our results suggest that the Parrot transformation and NPU
acceleration can provide significant performance and
energy benefits. However, further research must address
three limitations to the Parrot transformation as described
in this work: (1) applicability, (2) programmer effort, and
(3) quality and error control.

Applicability. Since neural networks inherently produce
approximate results, not all code regions can undergo the

0

1

2

3

4

5

fft inversek2j jmeint jpeg kmeans sobel geomean

3.4

2.5

1.2

1.9

4.5

15.8

3.8

2.3

1.9

.8

1.61.7

11.1

3.6

Core + NPU
Core + Ideal NPU

(a)

A
pp

lic
at

io
n

S
pe

ed
up

0

1

2

3

4

5

6

7

fft inversek2j jmeint jpeg kmeans sobel geomean

3.9

2.4

1.4

2.4

5.8

25.2

3.2 3.0

2.2

1.1

2.12.3

21.1

3.1

A
pp

lic
at

io
n

E
ne

rg
y

R
ed

uc
ti

on

Core + NPU
Core + Ideal NPU

(b)

Figure 7. Performance and energy improvements: (a) total
application speedup with 8-PE NPU and (b) total application energy
saving with 8-PE NPU.

Figure 8. Cumulative distribution function (CDF) plot of the
applications’ output error. A point (x, y) indicates that y fraction of
the output elements see error less than or equal to x.

0%
0%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Error

P
er

ce
nt

ag
e

of
 O

ut
pu

t
E

le
m

en
ts

inversek2j
jmeint
jpeg
kmeans
sobel

fft

20%

40%

60%

80%

100%

To study the application-level quality loss in more
detail, Figure 8 depicts the CDF (cumulative distribution
function) plot of final error for each element of applica-
tion’s output. The output of each benchmark consists of

research highlights

114 COMMUNICATIONS OF THE ACM | JANUARY 2015 | VOL. 58 | NO. 1

results is low and the application can tolerate these infre-
quent large errors, approximation techniques like NPUs
can be effective. For this reason, future research should
explore mechanisms to mitigate the frequency of such
low-quality results. One such mechanism is to predict
whether the NPU execution of the candidate region will
be acceptable. For example, one embodiment would
check whether an input falls in the range of inputs seen
previously during training. If the prediction is negative,
the original code can be invoked instead of the NPU.
Alternatively, the runtime system could occasionally mea-
sure the error by comparing the NPU output to the origi-
nal function’s output. In case the sampled error is greater
than a threshold, the neural network can be retrained.

9. CONCLUSION
Traditionally, hardware implementations of neural net-
works have been confined to specific classes of learn-
ing applications due to lack of traditional programming
models. In this paper, we showed that the potential
exists to use them to mimic and accelerate general-pur-
pose programs that can tolerate small errors. Our learn-
ing transformation provides the bridge between neural
and von Neumann models of computing and enables a
general-purpose use case for neural hardware. The accel-
eration capability of NPUs aligns with both transistor
and application trends, as transistors become less reli-
able and as imprecise applications grow in importance.
In fact, our work demonstrates that neural accelerators
can successfully mimic diverse regions of approximable
imperative code. The Parrot algorithmic transformation
converts different regions of code to a common neural
network representation. Using neural networks as the
common representation enables a new class of accelera-
tors, NPUs, that yield significant application- level energy
and performance savings. The levels of error introduced
are comparable to those seen in previous approximate
computing techniques. Besides introducing the Parrot
algorithmic transformation and a new class of accel-
erators, this work leads to the following two additional
key insights. First, the program transformation must
consider a range of neural network topologies; a sin-
gle topology is ineffective across diverse applications.
Second, the accelerator must be tightly coupled with a
processor’s pipeline to enable acceleration even when
fine-grained regions of code are transformed. By provid-
ing an end-to-end solution to meet these key require-
ments, the evaluated application suite ran 2.3× faster
on average while using 3.0× less energy and maintaining
accuracy greater than 90% in all cases. NPUs form a new
class of trainable accelerators with potential implemen-
tations in both the digital and analog domains.

Acknowledgments
We thank Brandon Lucia, Jacob Nelson, Ardavan
Pedram, Renée St. Amant, Karin Strauss, Xi Yang, Amir
Yazdanbakhsh, and the members of the Sampa group for
their feedback. This work was supported in part by NSF
grant CCF-1016495 and research support from Microsoft.

Parrot transformation. As enumerated in Section 3.1, a tar-
get code region must satisfy the following conditions:

• The region must be approximable. That is, the program
must incorporate application-level tolerance of impre-
cision in the results of the candidate region.

• The region must have a bounded number of statically
identifiable inputs and outputs.

• The region must be hot to benefit from acceleration.

Although these criteria form a basis for programmers or
compilers to identify nominees for the Parrot transforma-
tion, they do not guarantee that the resulting neural network
will accurately approximate the code region. There is no
simple criterion that makes a certain task (here a candidate
region) suited for learning by a neural network. However, our
experience and results suggest that empirical assessment is
effective to classify a wide variety of approximate functions
as NPU-suitable. Follow-on work can improve on empirical
assessment by identifying static code features that tend to
indicate suitability for learning-based acceleration.

Programmer effort. In this paper, the Parrot transfor-
mation requires programmers to (1) identify approximable
code regions and (2) provide application inputs to be used
for training data collection.

As with the other approaches that ensure the safety of
approximate computation and avoid catastrophic failures,26
the programmer must explicitly provide information for
the compiler to determine which code regions are safe to
approximate. As Section 3.2 outlines, future work should
explore allowing the compiler to automatically infer which
blocks are amenable to approximation.

Because NPU acceleration depends on representative
test cases, it resembles a large body of other techniques
that use programmer-provided test inputs, includ-
ing quality assurance (e.g., unit and integration test-
ing) and profile-driven compilers. Future work should
apply traditional coverage measurement and improve-
ment techniques, such as test generation, to the Parrot
transformation. In general, however, we found that it
was straightforward to provide sufficient inputs for the
programs we examined. This is in part because the can-
didate function is executed many times in a single appli-
cation run, so a small number of inputs can suffice.
Furthermore, as Section 4.2 mentions, an online version
of the Parrot transformation workflow could use samples
of postdeployment inputs if representative tests are not
available predeployment.

Quality and error control. The results in this paper sug-
gest that NPU acceleration can effectively approximate
code with accuracy that is commensurate with state-of-
the-art approximate computing techniques. However, there
is always a possibility that, for some inputs, the NPU com-
putes a significantly lower-quality result than the average
case. In other words, without exhaustively exploring the
NPU’s input space, it is impossible to provide formal guar-
antees about its worst-case accuracy.

This unpredictability is common to other approxima-
tion techniques.8, 26 As long as the frequency of low-quality

 JANUARY 2015 | VOL. 58 | NO. 1 | COMMUNICATIONS OF THE ACM 115

Jouppi, N.P. McPAT: An integrated
power, area, and timing modeling
framework for multicore and
manycore architectures. In MICRO
(2009).

19. Liu, S., Pattabiraman, K., Moscibroda, T.,
and Zorn, B.G. Flikker: Saving refresh-
power in mobile devices through
critical data partitioning. In ASPLOS
(2011).

20. Muralimanohar, N., Balasubramonian, R.,
 and Jouppi, N. Optimizing NUCA
organizations and wiring alternatives
for large caches with CACTI 6.0.
In MICRO (2007).

21. Narayanan, S., Sartori, J., Kumar, R.,
and Jones, D.L. Scalable
stochastic processors. In DATE
(2010).

22. Patel, A., Afram, F., Chen, S., and
Ghose, K. MARSx86: A full system
simulator for x86 CPUs. In DAC
(2011).

23. Putnam, A., Bennett, D., Dellinger, E.,
Mason, J., Sundararajan, P., and
Eggers, S. CHiMPS: A high-level
compilation flow for hybrid CPU-
FPGA architectures. In FPGA
(2008).

24. Razdan, R. and Smith, M.D. A high-
performance microarchitecture with
hardware-programmable functional

units. In MICRO (1994).
25. Rumelhart, D.E., Hinton, G.E., and

Williams, R.J. Learning internal
representations by error propagation.
In Parallel Distributed Processing:
Explorations in the Microstructure of
Cognition. D.E. Rumelhart, J.L. McClel-
land, and PDP Research Group, eds.
Volume 1. MIT Press, 1986, 318–362.

26. Sampson, A., Dietl, W., Fortuna, E.,
Gnanapragasam, D., Ceze, L., and
Grossman, D. EnerJ: Approximate
data types for safe and general low-
power computation. In PLDI (2011).

27. Sidiroglou-Douskos, S., Misailovic, S.,
Hoffmann, H., and Rinard, M. Managing
performance vs. accuracy trade-offs
with loop perforation. In FSE (2011).

28. Temam, O. A defect-tolerant accelerator
for emerging high-performance
applications. In ISCA (2012).

29. Venkatesh, G., Sampson, J.,
Goulding, N., Garcia, S., Bryksin, V.,
Lugo-Martinez, J., Swanson, S., and
Taylor, M.B. Conservation cores:
Reducing the energy of mature
computations. In ASPLOS (2010).

30. Zhu, J. and Sutton, P. FPGA
implementations of neural networks:
A survey of a decade of progress. In
FPL (2003).

Hadi Esmaeilzadeh (hadi@cc.gatech.
edu), Georgia Institute of Technology,
Atlanta, GA.

Adrian Sampson and Luis Ceze
({asampson, luisceze}@cs.washington.
edu), University of Washington, Seattle, WA.

Doug Burger (dburger@microsoft.com),
Microsoft Research, Redmond, WA.

References
 1. Baek, W. and Chilimbi, T.M. Green:

A framework for supporting
energy-conscious programming using
con trolled approximation. In PLDI
(2010).

 2. Chakrapani, L.N., Akgul, B.E.S.,
Cheemalavagu, S., Korkmaz, P.,
Palem, K.V., and Seshasayee, B.
Ultra-efficient (embedded) SOC
architectures based on probabilistic
CMOS (PCMOS) technology. In DATE
(2006).

 3. Chen, T., Chen, Y., Duranton, M.,
Guo, Q., Hashmi, A., Lipasti, M., Nere,
A., Qiu, S., Sebag, M., Temam, O., and
Bench, N.N. On the broad potential
application scope of hardware neural
network accelerators. In IISWC
(2012).

 4. de Kruijf, M., Nomura, S., and
Sankaralingam, K. Relax: An
architectural framework for software
recovery of hardware faults. In ISCA
(2010).

 5. Dennard, R.H., Gaensslen, F.H.,
Rideout, V.L., Bassous, E., and
LeBlanc, A.R. Design of ion-implanted
MOSFET’s with very small physical
dimensions. IEEE J. Solid-State Circ.
9 (Oct. 1974), 256–268.

 6. Esmaeilzadeh, H., Saeedi, P.,
Araabi, B.N., Lucas, C., and
Fakhraie, S.M. Neural network stream
processing core (NnSP) for embedded
systems. In ISCAS (2006).

 7. Esmaeilzadeh, H., Blem, E.,
St. Amant, R., Sankaralingam, K., and
Burger, D. Power challenges may end
the multicore era. Commun. ACM 56,
2 (Feb. 2013), 93–102.

 8. Esmaeilzadeh, H. et al. Architecture
support for disciplined approximate

programming. In ASPLOS (2012).
 9. Esmaeilzadeh, H., Sampson, A., Ceze, L.,

and Burger, D. Neural acceleration
for general-purpose approximate
programs. In MICRO (2012).

10. Galal, S. and Horowitz, M. Energy-
efficient floating-point unit design.
IEEE Trans. Comput. 60, 7 (2011)
913–922.

11. Govindaraju, V., Ho, C.H., and
Sankaralingam, K. Dynamically
specialized datapaths for energy
efficient computing. In HPCA (2011).

12. Gupta, S., Feng, S., Ansari, A., Mahlke, S.,
and August, D. Bundled execution
of recurring traces for energy-
efficient general purpose processing.
In MICRO (2011).

13. Guzhva, A., Dolenko, S., and
Persiantsev, I. Multifold acceleration
of neural network computations using
GPU. In ICANN (2009).

14. Hameed, R., Qadeer, W., Wachs, M.,
Azizi, O., Solomatnikov, A., Lee, B.C.,
Richardson, S., Kozyrakis, C., and
Horowitz, M. Understanding sources
of inefficiency in general-purpose
chips. In ISCA (2010).

15. Hardavellas, N., Ferdman, M.,
Falsafi, B., and Ailamaki, A. Toward
dark silicon in servers. IEEE Micro
31, 4 (July–Aug. 2011), 6–15.

16. Hashmi, A., Berry, H., Temam,
O., and Lipasti, M. Automatic
abstraction and fault tolerance
in cortical microarchitectures.
In ISCA (2011).

17. Joubert, A., Belhadj, B., Temam, O.,
and Héliot, R. Hardware spiking
neurons design: Analog or digital?
In IJCNN (2012).

18. Li, S., Ahn, J.H., Strong, R.D.,
Brockman, J.B., Tullsen, D.M., and © 2015 ACM 0001-0782/15/01 $15.00

ACM Transactions
on Interactive

Intelligent Systems

ACM Transactions on Interactive
Intelligent Systems (TIIS). This
quarterly journal publishes papers
on research encompassing the
design, realization, or evaluation of
interactive systems incorporating
some form of machine intelligence.

World-Renowned Journals from ACM
 ACM publishes over 50 magazines and journals that cover an array of established as well as emerging areas of the computing field.

IT professionals worldwide depend on ACM's publications to keep them abreast of the latest technological developments and industry
news in a timely, comprehensive manner of the highest quality and integrity. For a complete listing of ACM's leading magazines & journals,

including our renowned Transaction Series, please visit the ACM publications homepage: www.acm.org/pubs.

 PLEASE CONTACT ACM MEMBER
SERVICES TO PLACE AN ORDER
Phone: 1.800.342.6626 (U.S. and Canada)
 +1.212.626.0500 (Global)
Fax: +1.212.944.1318
 (Hours: 8:30am–4:30pm, Eastern Time)
Email: acmhelp@acm.org
Mail: ACM Member Services
 General Post Offi ce
 PO Box 30777
 New York, NY 10087-0777 USA

ACM Transactions on Computation
Theory (ToCT). This quarterly peer-
reviewed journal has an emphasis
on computational complexity, foun-
dations of cryptography and other
computation-based topics in theo-
retical computer science.

ACM Transactions
on Computation

Theory

www.acm.org/pubs

PUBS_halfpage_Ad.indd 1 6/7/12 11:38 AM

