
 JANUARY 2015  |   VOL.  58  |   NO.  1   |   COMMUNICATIONS OF THE ACM     105

Neural Acceleration for General-
Purpose Approximate Programs
By Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger

DOI:10.1145/2589750

Abstract
As improvements in per-transistor speed and energy 
efficiency diminish, radical departures from conventional 
approaches are needed to continue improvements in the 
performance and energy efficiency of general-purpose pro-
cessors. One such departure is approximate computing, 
where error in computation is acceptable and the tradi-
tional robust digital abstraction of near-perfect accuracy is 
relaxed. Conventional techniques in energy-efficient com-
puting navigate a design space defined by the two dimen-
sions of performance and energy, and traditionally trade 
one for the other. General-purpose approximate computing 
explores a third dimension—error—and trades the accuracy 
of computation for gains in both energy and performance. 
Techniques to harvest large savings from small errors have 
proven elusive. This paper describes a new approach that 
uses machine learning-based transformations to accelerate 
approximation-tolerant programs. The core idea is to train a 
learning model how an approximable region of code—code 
that can produce imprecise but acceptable results—behaves 
and replace the original code region with an efficient com-
putation of the learned model. We use neural networks to 
learn code behavior and approximate it. We describe the 
Parrot algorithmic transformation, which leverages a sim-
ple programmer annotation (“approximable”) to transform 
a code region from a von Neumann model to a neural model. 
After the learning phase, the compiler replaces the original 
code with an invocation of a low-power accelerator called a 
neural processing unit (NPU). The NPU is tightly coupled to 
the processor pipeline to permit profitable acceleration even 
when small regions of code are transformed. Offloading 
approximable code regions to NPUs is faster and more 
energy efficient than executing the original code. For a set 
of diverse applications, NPU acceleration provides whole-
application speedup of 2.3× and energy savings of 3.0× on 
average with average quality loss of at most 9.6%. NPUs form 
a new class of accelerators and show that significant gains 
in both performance and efficiency are achievable when the 
traditional abstraction of near-perfect accuracy is relaxed in 
general-purpose computing.

1. INTRODUCTION
It is widely understood that energy efficiency now funda-
mentally limits microprocessor performance gains. CMOS 
scaling is no longer providing gains in efficiency commen-
surate with transistor density increases.7, 15 As a result, both 
the semiconductor industry and the research community 
are increasingly focusing on specialized accelerators, which 
can provide large gains in efficiency and performance by 

restricting the workloads that benefit. Recent work has 
quantified three orders of magnitude of difference in effi-
ciency between general-purpose processors and ASICs.14 
The community is facing an “iron triangle” in this respect; 
we can choose any two of performance, energy efficiency, 
and generality at the expense of the third. Before the tradi-
tional trend of transistor scaling—Dennard scaling5—broke 
down, we were able to improve all three on a consistent basis 
for decades. In this post Dennard scaling era, solutions that 
improve performance and efficiency while retaining as 
much generality as possible are highly desirable; hence the 
exploding interest in GPGPUs and FPGAs. Such programma-
ble accelerators exploit some characteristic of an application 
domain to achieve efficiency gains at the cost of general-
ity. FPGAs, for example, exploit copious, fine-grained, and 
irregular parallelism while GPUs exploit many threads and 
data-level SIMD-style parallelism. Whether an application 
can use an accelerator effectively depends on the degree to 
which it exhibits the accelerator’s required characteristics.

Tolerance to approximation is one such program char-
acteristic. A growing body of recent work2, 4, 8, 19, 26, 27 has 
focused on approximation as a strategy for improving effi-
ciency. Large classes of applications can tolerate small 
errors in their outputs with no discernible loss in their 
quality of result (QoR). These applications are common in 
mobile, embedded, and server systems and fall into four 
broad categories:

1. Applications with analog inputs. This category includes 
image processing, sensor data processing, voice recog-
nition, etc., that operate on noisy real-world data. They 
are inherently resilient to some noise and can handle 
an “extra noise” resulting from approximation.

2. Applications with analog output. These applications 
comprise multimedia, image rendering, sound syn-
thesis, etc. Their output is intended for human percep-
tion and can inherently tolerate errors imperceptible 
to users.

3. Applications with no unique answer. This class of appli-
cations includes web search, machine learning, auton-
omous agents, etc., which do not offer a unique answer 
and multiple possible answers are acceptable.
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4. Iterative and convergent applications. This category 
includes applications such as data analytics and numer-
ical computations that iteratively process large amounts 
of data. They often sample data, stop the convergence 
procedure early, or apply approximate heuristics. Thus, 
these applications can naturally benefit from approxi-
mation techniques.

For these classes of applications, trading off computation 
accuracy can potentially lead to larger gains in performance 
and efficiency. One may visualize these trade-offs as finding 
the Pareto-optimal points in the processor design space, as 
shown in Figure 1. Traditionally, for any set of workloads, 
the set of possible processor implementations may be plot-
ted, with energy efficiency on one axis and performance 
on the other, and the best implementations residing on 
the two-dimensional frontier. When approximation is sup-
ported, the degree of permissible error represents a third 
axis. The Pareto surface in this three-dimensional space rep-
resents the best points of performance, efficiency, and error. 
However, this surface is not yet well understood.

This paper defines some new points on this Pareto sur-
face by developing a new class of programmable accelera-
tors that exploit approximation for better performance and 
energy efficiency. The core idea is to learn how a region of 
approximable code behaves and automatically replace the 
original code with an efficient computation of the learned 
model. This approach contrasts with previous work on 
approximate computation that extends conventional 
microarchitectures to support selective approximate execu-
tion, incurring instruction bookkeeping overheads4, 8, 19 or 
requires vastly different programming paradigms.2, 21 Like 
emerging flexible accelerators,11, 12, 29 our technique auto-
matically offloads code segments from programs written in 
mainstream languages. However, unlike prior work, it lever-
ages changes in the semantics of the offloaded code and the 
nature of computation. Such changes are possible because 
the transformed code region is approximable and can toler-
ate small errors.

NPU-enabled systems rely on our learning-based algo-
rithmic transformation that we refer to as the Parrot 
transformationa. This transformation converts regions 
of approximable general-purpose code into a neural rep-
resentation—specifically, multilayer perceptrons—at 
compile time. At run time, while the processor executes 
the program, it invokes the NPU instead of running the 
original region of code. NPUs result in large performance 
and efficiency gains, since they subsume a region of code, 
eliminating nearly all of the instruction fetch, decode, 
etc., overheads that would have been incurred if that 
region was executed on the processor. These overheads 
are replaced by a single, efficient invocation of neural 
hardware that exploits hard-wired control for additional 
efficiency. As illustrated in Figure 2, NPU acceleration pro-
vides improved generality over task-specific accelerators, 
as the Parrot transformation converts many distinct code 
patterns into a common representation that can be run 
on a single physical accelerator. In fact, our Parrot algo-
rithmic transformation replaces unstructured serial code 
with a neural network that has structured fine grain paral-
lelism that is executed on an efficient statically scheduled 
hardware structure, the NPU. Therefore, converting diverse 
regions of code to the common neural representation 
can lead to significant performance and efficiency gains 
because neural networks consist of simple, regular, and 
parallel operations.

We show that using neural networks to replace regions of 
imperative code is both feasible and profitable by accelerat-
ing a diverse range of applications, including FFT, gaming, 
clustering, and vision algorithms (Section 6). These applica-
tions do not belong to the class of modeling and prediction 
tasks that typically use neural networks. For each application, 
we apply the transformation on a single approximable func-
tion that dominates the program’s execution time. NPU accel-
eration provides 2.3× average whole-application speedup 
and 3.0× average energy savings for these benchmarks with 
average accuracy greater than 90% in all cases.
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Figure 1. Adding the dimension of error to the design space of 
general-purpose processors changes the problem of finding the 
Pareto frontier to finding the Pareto surface. Navigating this three-
dimensional space, finding, and understanding this Pareto surface is 
a fascinating research direction.
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Figure 2. The Parrot algorithmic transformation converts different 
regions of code to a common neural intermediate representation. 
Neural networks as a common representation enable acceleration of 
diverse applications using a single physical NPU.

a We named our algorithmic transformation, the Parrot transformation 
 because its output is a learning model that mimics the original region of code.
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The Parrot algorithmic transformation and the NPU 
acceleration bridge von Neumann and neural models 
of computing. These techniques make neural hardware 
programmable via conventional programming languages 
and extend their use beyond prediction and modeling to 
accelerating general-purpose code. The results from this 
paper show that when the traditional abstraction of near-
perfect accuracy is relaxed, different models of comput-
ing can be merged to obtain large gains in performance 
and efficiency.

2. OVERVIEW
As depicted in Figure 3, the Parrot transformation is an 
algorithmic transformation that converts regions of 
imperative code to neural networks. Because neural net-
works expose considerable parallelism and consist of 
simple operations, they can be efficiently accelerated 
using dedicated hardware. Therefore, the Parrot trans-
formation can yield significant performance and energy 
improvements. The transformation uses a training-based 
approach to produce a neural network that approximates 
the behavior of candidate code. A transformed program 
runs primarily on the main core and invokes an auxiliary 
hardware structure, the NPU, to perform neural evaluation 
instead of executing the replaced code. Figure 3 shows an 
overview of the Parrot algorithmic transformation, which 
has three key phases: programming, in which the pro-
grammer marks code regions to be transformed; compila-
tion, in which the compiler selects and trains a suitable 
neural network and replaces the original code with a neu-
ral network invocation; and execution.

Programming. The Parrot transformation starts with the 
programmer identifying candidate code regions as approx-
imable. Because tolerance of approximation is a semantic 
property, it is the programmer’s responsibility to select code 
whose approximate execution would not compromise the 
overall reliability of the application. This requirement is a com-
mon practice in the approximate computing literature.4, 8, 26

Compilation. Once the source code is annotated, as 
shown in Figure 3, the compiler applies the Parrot transfor-
mation in three steps: (1) code observation, (2) neural net-
work selection and training, and (3) binary generation.

Training neural networks for any task requires a col-
lection of input–output pairs that capture the task’s 

function. Therefore, in the code observation step, the com-
piler observes the behavior of the candidate code region by 
logging its inputs and outputs. This step is similar to pro-
filing. The compiler instruments the program with probes 
on the inputs and outputs of the candidate functions. Then, 
the instrumented program is run using representative input 
sets such as those from a test suite. The probes log the 
inputs and outputs of the candidate functions. The logged 
input–output pairs constitute the training and validation 
data for the next step.

The compiler uses the collected input–output data to 
configure and train a neural network that mimics the can-
didate region. The compiler must find the simplest topol-
ogy of the neural network that provides acceptable error, for 
which more complex networks would provide diminishing 
returns in QoR. The compiler also needs to find the syn-
aptic weights of the network. It uses the backpropagation 
algorithm25 coupled with a topology search to configure and 
train the neural network.

The final step of the Parrot transformation is code gen-
eration. The compiler first generates a configuration for the 
NPU that implements the trained neural network. Then, the 
compiler replaces each call to the original function with a 
series of special instructions that invoke the NPU, sending 
the inputs and receiving the computed outputs. The NPU 
configuration and invocation is performed through ISA 
extensions that are added to the core.

Execution. During deployment, the transformed pro-
gram begins execution on the main core and configures 
the NPU. Throughout execution, the NPU is invoked to 
perform a neural network evaluation in lieu of executing 
the original code region. The NPU is integrated as a tightly 
coupled accelerator in the processor pipeline. Invoking 
the NPU is faster and more energy efficient than execut-
ing the original code region, so the program as a whole is 
accelerated.

As Figure 4 shows, many NPU implementations are fea-
sible, from all-software execution to specialized analog 
circuits. Because the Parrot transformation’s effective-
ness rests on the efficiency of neural network evaluation, 
it is essential that invoking the NPU be fast and low power. 
Therefore, we describe a high-performance hardware NPU 
design based on a digital neural network ASIC and architec-
ture support to facilitate low-latency NPU invocations.
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Figure 3. The Parrot transformation at a glance: from annotated code to accelerated execution on an NPU-augmented core.
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3. PROGRAMMING MODEL
The Parrot transformation starts with the programmer iden-
tifying candidate code regions. This section discusses these 
criteria as well as the concrete language interface exposed to 
the programmer. After the candidate regions are identified, 
the Parrot transformation is fully automated.

3.1. Code region criteria
Candidate code for the Parrot transformation must satisfy 
three criteria: it must be frequently executed (i.e., a “hot” 
function); it must tolerate imprecision in its computation; 
and it must have well-defined inputs and outputs.

Hot code. Like any acceleration technique, the Parrot 
transformation should replace hot code. The Parrot trans-
formation can be applied to a wide range of code from small 
functions to entire algorithms. The code region can contain 
function calls, loops, and complex control flow whose cost 

can be elided by the Parrot transformation. When applied 
to smaller regions of code, the overhead of NPU invocation 
needs to be low to make the transformation profitable. A tra-
ditional performance profiler can reveal hot code.

For example, edge detection is a widely applicable 
image processing computation. Many implementations of 
edge detection use the Sobel filter, a 3 × 3 matrix convolu-
tion that approximates the image’s intensity gradient. As 
the bottom box in Figure 5a shows, the local Sobel filter 
computation (the sobel function) is executed many times 
during edge detection, so the convolution is a hot func-
tion in the overall algorithm and a good candidate for the 
Parrot transformation.

Approximability. Code regions identified for the Parrot 
transformation will behave approximately during execution. 
Therefore, programs must incorporate application-level 
tolerance of imprecision. This requires the programmer to 
ensure that imprecise results from candidate regions will 
not cause catastrophic failures. As prior work on approxi-
mate programming1, 4, 19, 26, 27 has shown, it is not difficult to 
deem regions approximable.

Beyond determining that a code region may safely pro-
duce imprecise results, the programmer need not reason 
about the mapping between the code and a neural network. 
While neural networks are more precise for some functions 
than they are for others, we find that they can accurately 
mimic many functions from real programs (see Section 6). 
Intuitively, however, they are less likely to effectively approxi-
mate chaotic functions, in which even large training sets can 
fail to capture enough of the function’s behavior to general-
ize to new inputs. However, the efficacy of neural network 
approximation can be assessed empirically. The program-
mer should annotate all approximate code; the compiler 
can then assess the accuracy of a trained neural network in 
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CPU GPU FPGA
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Figure 4. Design space of NPU implementations. This work focuses 
on a precise digital ASIC design.
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5 y = (p[0][2] + 2  ∗  p[1][2] + p[2][2]);
y += (p[0][0] + 2 ∗  p[1][1] + p[2][0]);

7 r = sqrt (x ∗  x + y ∗  y);
if (r >= 0.7071) r = 0.7070;

9 return r;
}

2
for (int y = 0; y < srcImg.height; ++y)

4 for (int x = 0; x < srcImg.width; ++x)
srcImg.toGrayeScale(x,y);

6 for (int y = 0; y < srcImg.height; ++y)
for (int x = 0; x < scrImg.width; ++x){

8 p = srcImg.build3x3Window(x, y);

10 dstImg.setPixel(x, y, pixel);
}

12 }
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4
srcImg.toGrayeScale(x, y);

6 for (int y = 0; y < srcImg.height; ++y)
for (int x = 0; x < scrImg.width; ++x){

8 p = srcImg.build3x3Window(x, y);
NPU_SEND(p[0][0]); NPU_SEND(p[0][1]); NPU_SEND(p[0][2]);

10 NPU_SEND(p[1][0]); NPU_SEND(p[1][1]); NPU_SEND(p[1][2]);
NPU_SEND(p[2][0]); NPU_SEND(p[2][1]); NPU_SEND(p[2][2]);

12 NPU_RECEIVE(pixel);
dstImg.setPixel(x, y, pixel);

14 }
}
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void edgeDetection (Image& srcImg, Image& dstImg){
2 float [3][3] p; float pixel;
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void edgeDetection (Image& srcImg, Image& dstImg){
2 float [3][3] p; float pixel;

for (int y = 0; y < srcImg.height; ++y)
4 for (int x = 0; x < srcImg.width; ++x)

6

8

10

12

14 }
}

float sobel [[approximable]] (float[3][3] p){

pixel = sobel(p);

Figure 5. Three stages in the transformation of an edge detection algorithm using the Sobel filter: (a) original implementation of the Sobel 
filter, (b) sobel function transformed to a 9 Æ 8 Æ 1 NN, and (c) Parrot transformed code; NPU invocation replaces the function call.
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4.1. Code observation
Training neural networks for any task requires a collec-
tion of input–output pairs that capture the task’s function. 
Therefore, in the first phase, the compiler collects input–
output pairs for the target code that reflect real program exe-
cutions. This in-context observation allows the compiler to 
train the neural network on a realistic data set. The compiler 
produces an instrumented binary for the source program 
that includes probes on the input and output of the anno-
tated function. Each time the candidate function executes, 
the probes record its inputs and outputs. The program is 
run repeatedly using test inputs. The output of this phase 
is a training data set: each input–output pair represents a 
sample for the training algorithm.

The observation phase resembles the profiling runs used 
in profile-guided compilation. Specifically, it requires rep-
resentative test inputs for the application. The inputs may 
be part of an existing test suite or randomly generated. In 
many cases, a small number of application test inputs are 
sufficient to train a neural network because the candidate 
function is executed many times in a single application run.

4.2. Training
The compiler uses the training data to produce a neural net-
work that replaces the original function. There are a variety 
of types of artificial neural networks in the literature, but we 
narrow the search space to multilayer perceptrons (MLPs) 
due to their broad applicability.

The compiler uses the backpropagation algorithm25 to 
train the neural network. Backpropagation is a gradient 
descent algorithm that iteratively adjusts the weights of the 
neural network according to each input–output pair.

Neural network topology selection. In addition to run-
ning backpropagation, this phase selects a network topol-
ogy that balances accuracy and efficiency. An MLP consists 
of a fully connected set of neurons organized into layers: 
the input layer, any number of “hidden” layers, and the 
output layer. A larger, more complex network offers better 
accuracy potential but is likely to be slower and less power 
efficient than a small, simple neural network. The objec-
tive is to find the smallest neural network that achieves 
acceptable accuracy.

To choose the topology, we use a simple search algo-
rithm guided by the mean squared error of the neural 
network when tested on an unseen subset of the observed 
data. The error evaluation uses a typical cross-validation 
approach: the compiler partitions the data collected dur-
ing observation into a training set, 70% of the observed 
data, and a test set, the remaining 30%. The topology search 
algorithm trains many different neural network topologies 
using the training set and chooses the one with the highest 
accuracy on the test set and the lowest latency on the NPU 
(prioritizing accuracy).

The output from this phase consists of a neural network 
topology—specifying the number of layers and the number 
of neurons in each layer—along with the weight for each neu-
ron and the normalization range for each input and output.

Online training. The current system performs obser-
vation and training prior to deployment; an alternative 

replacing each function and select only those functions for 
which neural networks are a good match.

In the Sobel filter example, parts of the code that process 
the pixels can be approximated. The code region that com-
putes pixel addresses and builds the window for the sobel 
function (line 8 in the bottom box of Figure 5a) needs to be 
precise to avoid memory access violations. However, the sobel 
function, which estimates the intensity gradient of a pixel, is 
fundamentally approximate. Thus, approximate execution of 
this function will not result in catastrophic failure and, more-
over, is unlikely to cause major degradation of the overall 
edge detection quality. These properties make the sobel func-
tion a suitable candidate region for approximate execution.

Well-defined inputs and outputs. The Parrot transforma-
tion replaces a region of code with a neural network that has 
a fixed number of inputs and outputs. Therefore, it imposes 
two restrictions on the code regions that can feasibly be 
replaced. First, the inputs to and outputs from the candidate 
region must be of a fixed size known at compile time. For 
example, the code may not dynamically write an unbounded 
amount of data to a variable-length array. Second, the code 
must not cause side effects via system calls. These two crite-
ria can be checked statically.

The sobel function in Figure 5a complies with these 
requirements. It takes nine statically identifiable floating-
point numbers as input, produces a single output, and has 
no side effects.

3.2. Annotation
In this work, we apply the Parrot transformation to entire 
functions. To identify candidate functions, the programmer 
marks them with an annotation (e.g., using C++11 [[approx-
imble]] syntax) as shown in Figure 5a. The programmer is 
responsible for ensuring that the function has well-defined 
inputs and outputs. All the inputs are in the argument list and 
all the outputs are part of the return value. Each argument 
type and the return type must have a fixed size; however, they 
may have multiple elements, for example, fixed-size array or 
a record. If any of these types is a pointer type, it must point 
to a fixed-size value; this referenced value is then considered 
the neural network input or output rather than the pointer 
itself. If the function needs to return multiple values, it can 
return a fixed-size array or a C struct. After the programmer 
annotates the candidate functions, the Parrot transforma-
tion is completely automatic and transparent: no further 
programmer intervention is necessary.

Like prior work on approximate computing, we acknowl-
edge that some programmer guidance is essential when 
identifying error-tolerant code.1, 4, 8, 19 , 26 Tolerance to approx-
imation is an inherently application-specific property. While 
we find that the simple explicit function annotations are 
straightforward to apply (see Section 6), static analysis tech-
niques could be used to further simplify the annotation pro-
cess and significantly automate it.

4. COMPILATION WORKFLOW
Once the program has been annotated, the compilation work-
flow implements the Parrot transformation in three steps: 
observation, training, and instrumented binary generation.
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5.2. Neural processing unit
As Figure 4 illustrates, there are many possibilities for 
the implementation of the NPU itself. Neural networks 
have previously been implemented in software on the CPU 
or GPU,13 on FPGAs,30 in digital ASICs,6 and even in ana-
log circuitry or FPAAs.17 As shown in Figure 6, we designed 
a reconfigurable digital NPU circuit that operates at the 
same voltage and frequency as the main core. More details 
on our NPU design can be found in Esmaeilzadeh et al.9 
This implementation represents a reasonable trade-off 
between efficiency and complexity. However, we believe 
that analog NPUs have significant potential and we plan to 
explore them in future work.

The Parrot transformation produces different neural 
network topologies for different code regions. Thus, our 
reconfigurable NPU accelerates the evaluation of a range 
of neural topologies. As shown in Figure 6, the NPU contains 
eight identical processing engines (PEs) and one scaling 
unit. The scaling unit scales the neural network’s inputs 
and outputs if necessary using scaling factors defined in 
the NPU configuration process.

The PEs in the NPU are statically scheduled. The 
scheduling information is part of the configuration 
information for the NPU, which is based on the neural 
network topology derived during the training process. In 
the NPU’s schedule, each neuron in the neural network 
is assigned to one of the eight PEs. The neural network’s 
topology determines a static schedule for the timing of 
the PE computations, bus accesses, and queue accesses. 

design could train the neural network concurrently with 
in vivo operation. Online training could improve accuracy 
but would result in runtime overheads. To address these 
overheads, an online training system could offload neu-
ral network training and configuration to a remote server. 
With off-site training, multiple deployed application 
instances could centralize their training to increase input 
space coverage.

4.3. Code generation
After the training phase, the compiler generates an instru-
mented binary that runs on the core and invokes the NPU 
instead of calling the original function. The program config-
ures the NPU when it is first loaded by sending the topology 
parameters and synaptic weights to the NPU. The compiler 
replaces the calls to the original function with special instruc-
tions that send the inputs to the NPU and collect the outputs 
from it.

5. ARCHITECTURE DESIGN FOR NPU ACCELERATION
Since candidate regions for the Parrot transformation can 
be fine grained, NPU invocation must be low-overhead to 
be beneficial. Ideally, the NPU should integrate tightly with 
the processor pipeline. The processor ISA also needs to be 
extended to allow programs to configure and invoke the 
NPU during execution.

5.1. ISA support for NPU acceleration
The NPU is a variable-delay, tightly coupled accelerator that 
communicates with the rest of the core via FIFO queues. 
The CPU–NPU interface consists of three queues: one for 
sending and retrieving the configuration, one for sending 
the inputs, and one for retrieving the neural network’s out-
puts. The ISA is extended with four instructions to access 
the queues. These instructions assume that the processor 
is equipped with a single NPU; if the architecture supports 
multiple NPUs or multiple stored configurations per NPU, 
the instructions may be parameterized with an operand that 
identifies the target NPU.

• enq.c %r: enqueues the value of the register r into the 
config FIFO.

• deq.c %r: dequeues a configuration value from the con-
fig FIFO to the register r.

• enq.d %r: enqueues the value of the register r into the 
input FIFO.

• deq.d %r: dequeues the head of the output FIFO to the 
register r.

To set up the NPU, the program executes a series of enq.c 
instructions to send configuration parameters—number of 
inputs and outputs, network topology, and synaptic weights—
to the NPU. The operating system uses deq.c instructions 
to save the NPU configuration during context switches. To 
invoke the NPU, the program executes enq.d repeatedly to send 
inputs to the configured neural network. As soon as all of the 
inputs of the neural network are enqueued, the NPU starts 
computation and puts the results in its output FIFO. The pro-
gram executes deq.d repeatedly to retrieve the output values.

Figure 6. Reconfigurable 8-PE NPU: (a) 8-PE NPU, (b) single 
processing engine (PE), and (c) design parameters of the NPU.

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Bus 
Scheduler

Scheduling BufferConfig FIFO

Output FIFO

Input FIFO
Scaling

Unit

(a)

Sigmoid
Unit

Weight Buffer

Output Register File

Input FIFO

Controller

Accumulator
Registers

(b)

Parameter Configuration

Number of PEs 8
Bus Schedule FIFO 512 × 20-bit
Input FIFO 128 × 32-bit
Output FIFO 128 × 32-bit
Config FIFO 8 × 32-bit

512 × 33-bit
8 × 32-bit
8 × 32-bit

128 × 32-bit

PE Weight Cache
PE Input FIFO
PE Output Register File
Sigmoid Unit LUT
Multiply–Add Unit 32-bit Single Precision FP

(c)

Multiply–Add
Unit



 

 JANUARY 2015  |   VOL.  58  |   NO.  1   |   COMMUNICATIONS OF THE ACM     111

The NPU stores the bus scheduling information in its 
circular scheduling buffer (shown in Figure 6). Figure 6b 
shows the internal structure of a single PE. Each PE per-
forms the computation for all of its assigned neurons. 
Namely, because the NPU implements a sigmoid-activa-
tion MLP, each neuron computes its output as y = sig-
moid (Si(xi × wi)), where xi is an input to the neuron and 
wi is its corresponding weight. The weight buffer, a cir-
cular buffer, stores the weights. When a PE receives an 
input from the bus, it stores the value in its input FIFO. 
When the neuron weights for each PE are configured, 
they are placed into the weight buffer; the compiler-
directed schedule ensures that the inputs arrive in the 
same order that their corresponding weights appear in 
the buffer. This way, the PE can perform multiply-and-
add operations in the order the inputs enter the PE’s 
input FIFO.

Since the computation of the neural network requires 
only simple operations that are limited to multiply–add 
and sigmoid lookup, the structure of the PEs is fairly 
simple. Furthermore, neural network computation 
exposes fine grain regular parallelism that we exploited 
in our NPU design by including multiple identical PEs. 
In fact, our Parrot algorithmic transformation replaces 
unstructured serial code with a neural network that has 
structured fine grain parallelism that is executed on an 
efficient statically scheduled hardware structure, NPU.

6. EVALUATION
To evaluate the effectiveness of the Parrot transformation, 
we apply it to several benchmarks from diverse application 
domains. For each benchmark, we identify a region of code 
that is amenable to the Parrot transformation. We evaluate 
whole-application speedup and energy savings using cycle-
accurate simulation and a power model. We also examine 
the resulting trade-off in computation accuracy. We refer the 
reader to the original paper for more details on the evaluation.9

6.1. Benchmarks
Table 1 lists the approximation-tolerant applications from 
diverse domains that are used to evaluate the broad applica-
bility of our technique. These benchmarks are all written in C. 
The application domains—signal processing, robotics, gaming, 
compression, machine learning, and image processing—are 
selected for their usefulness to general applications and toler-
ance to imprecision. The domains are commensurate with eval-
uations of previous work on approximate computing.8, 19, 26, 

27 To be able to assess the effect of the Parrot transformation 
perceptually, we selected a number of benchmarks that gener-
ate image outputs and compared the output image with and 
without the transformation. We did not reject any of the appli-
cations based on performance, energy, or accuracy shortfalls.

Table 1 also lists the input sets used for performance, 
energy, and accuracy assessment. These input sets are dif-
ferent from the ones used during the training phase of 

Table 1. The benchmarks evaluated, details for each transformed function, input data, and the result of the Parrot transformation.

Description Type
Evaluation 
input set

No. of 
function 

calls
No. of 
loops

No. 
of 

ifs/
elses

No. of 
×86-64 
instruc-

tions
Training 
input set

Neural 
network 
topology

NN 
MSE

Error 
metric Error

fft Radix-2 
Cooley-
Tukey fast 
Fourier

Signal 
processing

2048 ran-
dom float-
ing-point 
numbers

2 0 0 34 32,768 
random 
float-
ing-point 
numbers

1 ® 4 ® 
4 ® 2

0.00002 Average 
relative 
error

7.22%

inversek2j Inverse 
kinematics 
for two-joint 
arm

Robotics 10,000 (x, y) 
random 
coordinates

4 0 0 100 10,000 
(x,  y) 
random 
coordinates

2 ® 8 
® 2

0.00563 Average 
relative 
error

7.50%

jmeint Triangle 
intersection 
detection

3D gaming 10,000 ran-
dom pairs of 
3D triangle 
coordinates

32 0 23 1079 100,000 
random 
pairs of 3D 
triangle 
coordinates

18 ® 32 
® 8 ® 2

0.00530 Miss 
rate

7.32%

jpeg JPEG 
encoding

Compression 220 × 200-
pixel color 
image

3 4 0 1257 Three 512 
× 512-pixel 
color 
images

64 ® 16 
® 64

0.00890 Image 
differ-
ence

9.56%

kmeans K-means 
clustering

Machine 
learning

220 × 200-
pixel color 
image

1 0 0 26 50,000 
pairs of 
random (r, 
g, b) values

6 ® 8 ® 
4 ® 1

0.00169 Image 
differ-
ence

6.18%

sobel Sobel edge 
detector

Image 
processing

220 × 200-
pixel color 
image

3 2 1 88 One 512 × 
512-pixel 
color 
image

9 ® 8 
® 1

0.00234 Image 
differ-
ence

3.44%
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6.2. Experimental setup
Simulation. We use the MARSSx86 cycle-accurate x86-64 
simulator22 to evaluate the performance effect of the Parrot 
transformation and NPU acceleration. We configure the 
simulator to resemble Intel’s Penryn microarchitectureb, 
which is an aggressive out-of-order design. We augment 
MARSSx86 with a cycle-accurate NPU simulator and add 
support for NPU queue instructions through unused x86 
opcodes. We use C assembly inlining to add the NPU invoca-
tion code. We compile the benchmarks using GCC version 
4.4.6 with the -O3 flag to enable aggressive compiler opti-
mizations. The baseline in all of the reported results is the 
execution of the entire benchmark on the core without the 
Parrot transformation.

Energy modeling. MARSSx86 generates an event log 
dur   ing the cycle-accurate simulation of the program. 
The result ing statistics are sent to a modified version 
of McPAT18 to estimate the energy consumption of each 
execution. We model the energy consumption of an 8-PE 
NPU using the results from McPAT and CACTI 6.520 for 
memory arrays, buses, and steering logic. We use the 
results from Galal and Horowitz10 to estimate the energy 
of multiply-and-add operations. We model the NPU and 
the core at the 45 nm technology node. The NPU oper-
ates at the same frequency and voltage as the main core. 
We use the 2080 MHz frequency and Vdd = 0.9 V settings 
because the energy results in Galal and Horowitz10 use 
this frequency and voltage setting.

6.3. Experimental results
Figure 7a shows the application speedup when an 8-PE 
NPU is used to replace each benchmark’s target func-
tion. The rest of the code runs on the core. The base-
line is executing the entire, untransformed benchmark 
on the CPU. The plots also show the potential available 
speedup: the hypothetical speedup if the NPU takes 
zero cycles for computation. Among the benchmarks, 
inversek2j sees the highest speedup (11.1×) since the 
Parrot transformation substitutes the bulk of the appli-
cation with a relatively small NN (2 ® 8 ® 2). On the 
other hand, kmeans sees a 24% slowdown even though it 
shows a potential speedup of 20% in the limit. The trans-
formed region of code in kmeans consists of 26 mostly 
arithmetic instructions that can efficiently run on the 
core while the NN (6 ® 8 ® 4 ® 1) for this benchmark is 
comparatively complex and involves more computation 
(84 multiply–adds and 12 sigmoids) than the original 
code. On average, the benchmarks see a speedup of 2.3× 
through NPU acceleration.

Figure 7b shows the energy reduction for each bench-
mark. The baseline is the energy consumed by running 
the entire benchmark on the unmodified CPU and the 
ideal energy savings for a hypothetical zero-energy NPU. 
The Parrot transformation elides the execution of signifi-
cant portion of dynamic instructions that otherwise would 
go through power-hungry stages of the OoO pipeline. The 
reduction in the number of dynamic instructions and the 
energy-efficient design of the NPU yield a 3.0× average appli-
cation energy reduction.

the Parrot transformation. For applications with random 
inputs, we use a different random input set. For applications 
with image input, we use a different image.

Code annotation. The C source code for each benchmark 
was annotated as described in Section 2: we identified a 
single pure function with fixed-size inputs and outputs. No 
algorithmic changes were made to the benchmarks to accom-
modate the Parrot transformation. There are many choices 
for the selection of target code and, for some programs, mul-
tiple NPUs may even have been beneficial. For the purposes 
of this evaluation, however, we selected a single target region 
per benchmark that was easy to identify, frequently executed 
as to allow for efficiency gains, and amenable to learning by a 
neural network. Qualitatively, we found it straightforward to 
identify a reasonable candidate function in each benchmark.

As shown in Table 1, in most of the benchmarks we 
examined, the target code contains complex control flow 
including conditionals, loops, and method calls. In jmeint, 
the target code contains the bulk of the algorithm, includ-
ing many nested method calls and numerous conditionals. 
In jpeg, the transformation subsumes the discrete cosine 
transform and quantization phases, which contain function 
calls and loops. In fft, inversek2j, and sobel, the target code 
consists mainly of arithmetic operations and simpler control 
flow. In kmeans, the target code is the Euclidean distance 
calculation, which is simple and fine grained yet frequently 
executed. In each case, the target code is side-effect-free and 
the number of inputs/outputs is statically identifiable.

Training data. To train the NPU for each application, we 
have used either (1) typical program inputs (e.g., sample 
images) or (2) a limited number of random inputs. For the 
benchmarks that use random inputs, we determined the 
permissible range of parameters in the code and gener-
ated uniform random inputs in that range. For the image-
based benchmarks, we used three standard images that 
are used to evaluate image processing algorithms. For 
kmeans, we supplied random inputs to the code region to 
avoid overtraining on a particular test image.

Output quality. We use an application-specific error met-
ric to assess the QoR for each benchmark. In all cases, we 
compare the output of the original untransformed appli-
cation to the output of the transformed application. For fft 
and inversek2j, which generate numeric outputs, we mea-
sure the average relative error. jmeint calculates whether 
two three-dimensional triangles intersect; we report the 
misclassification rate. For jpeg, kmeans, and sobel, which 
produce image outputs, we use the average root-mean-
square image difference.

As the last column of Table 1 shows, application average 
error rates range from 3% to 10%. This QoR loss is commen-
surate with other work on quality trade-offs.1, 8, 26

b Processor: Fetch/Issue Width: 4/6, INT ALUs/FPUs: 3/2, Load/Store FUs: 2/2, 
ROB Entries: 96, Issue Queue Entries: 32, INT/FP Physical Registers: 256/256, 
Branch Predictor: Tournament 48KB, BTB Sets/Ways: 1024/4, RAS Entries: 
64, Load/Store Queue Entries: 48/48, Dependence Predictor: 4096-entry 
Bloom Filter, ITLB/DTLB Entries: 128/256, L1: 32KB Instruction, 32KB Data, 
Line Width: 64 bytes, 8-Way, Latency: 3 cycles, L2: 2MB, Line Width 64 bytes, 
8-Way, Latency: 12 cycles, Memory Latency: 50 ns (104 cycles).
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a collection of elements—an image consists of pixels, a 
vector consists of scalars, etc. The error CDF reveals the 
distribution of output errors among an application’s out-
put elements and shows that very few output elements see 
large quality loss. The majority (80–100%) of each trans-
formed application’s output elements have error less 
than 10%.

7. RELATED WORK
This work represents a convergence of three main bod-
ies of research: approximate computing, general-purpose 
configurable acceleration, and hardware neural net-
works. Fundamentally, the Parrot transformation lever-
ages hardware neural networks to create a new class of 
configurable accelerators for approximate programs.

Approximate computing. Prior work has explored 
relaxed hardware semantics and their impact on applica-
tions with “soft” output requirements, both as (1) exten-
sions to traditional architectures4, 8, 19 and (2) in the form 
of fully approximate processing units.2, 21 In contrast, NPUs 
accelerate coarse-grained blocks of code in larger applica-
tions. No special code must be written to take advantage 
of the approximate unit; only lightweight annotation is 
required. Some work has also exposed relaxed semantics 
in the programming language to give programmers con-
trol over the precision of software.1, 4, 26 As an implementa-
tion of approximate semantics, the Parrot transformation 
dovetails with these programming models.

General-purpose configurable acceleration. The Parrot 
transformation extends prior work on configurable comput-
ing, synthesis, specialization, and acceleration that focuses 
on compiling traditional, imperative code for efficient hard-
ware structures. One research direction seeks to synthesize 
efficient circuits or configure FPGAs to accelerate general-
purpose code.23, 24 Similarly, static specialization has shown 
significant efficiency gains for irregular and legacy code.29 
More recently, configurable accelerators have been proposed 
that allow the main CPU to offload certain code to a small, 
efficient structure.11, 12 This work differs in its focus on accel-
erating approximate code. NPUs represent an opportunity to 
go beyond the efficiency gains that are possible when strict 
correctness is not required.

Neural networks. There is an extensive body of work on 
hardware implementation of neural networks (neural hard-
ware) both digital6 and analog.17 Other work has examined 
the fault tolerance of hardware neural networks.16, 28 A recent 
study3 showed that 5 of 13 applications from the PARSEC 
suite can be manually reimplemented to make use of vari-
ous kinds of neural networks.

8. LIMITATIONS AND FUTURE DIRECTIONS
Our results suggest that the Parrot transformation and NPU 
acceleration can provide significant performance and 
energy benefits. However, further research must address 
three limitations to the Parrot transformation as described 
in this work: (1) applicability, (2) programmer effort, and 
(3) quality and error control.

Applicability. Since neural networks inherently produce 
approximate results, not all code regions can undergo the 
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Figure 7. Performance and energy improvements: (a) total 
application speedup with 8-PE NPU and (b) total application energy 
saving with 8-PE NPU.

Figure 8. Cumulative distribution function (CDF) plot of the 
applications’ output error. A point (x, y) indicates that y fraction of 
the output elements see error less than or equal to x.
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To study the application-level quality loss in more 
detail, Figure 8 depicts the CDF (cumulative distribution 
function) plot of final error for each element of applica-
tion’s output. The output of each benchmark consists of 
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results is low and the application can tolerate these infre-
quent large errors, approximation techniques like NPUs 
can be effective. For this reason, future research should 
explore mechanisms to mitigate the frequency of such 
low-quality results. One such mechanism is to predict 
whether the NPU execution of the candidate region will 
be acceptable. For example, one embodiment would 
check whether an input falls in the range of inputs seen 
previously during training. If the prediction is negative, 
the original code can be invoked instead of the NPU. 
Alternatively, the runtime system could occasionally mea-
sure the error by comparing the NPU output to the origi-
nal function’s output. In case the sampled error is greater 
than a threshold, the neural network can be retrained.

9. CONCLUSION
Traditionally, hardware implementations of neural net-
works have been confined to specific classes of learn-
ing applications due to lack of traditional programming 
models. In this paper, we showed that the potential 
exists to use them to mimic and accelerate general-pur-
pose programs that can tolerate small errors. Our learn-
ing transformation provides the bridge between neural 
and von Neumann models of computing and enables a 
general-purpose use case for neural hardware. The accel-
eration capability of NPUs aligns with both transistor 
and application trends, as transistors become less reli-
able and as imprecise applications grow in importance. 
In fact, our work demonstrates that neural accelerators 
can successfully mimic diverse regions of approximable 
imperative code. The Parrot algorithmic transformation 
converts different regions of code to a common neural 
network representation. Using neural networks as the 
common representation enables a new class of accelera-
tors, NPUs, that yield significant application- level energy 
and performance savings. The levels of error introduced 
are comparable to those seen in previous approximate 
computing techniques. Besides introducing the Parrot 
algorithmic transformation and a new class of accel-
erators, this work leads to the following two additional 
key insights. First, the program transformation must 
consider a range of neural network topologies; a sin-
gle topology is ineffective across diverse applications. 
Second, the accelerator must be tightly coupled with a 
processor’s pipeline to enable acceleration even when 
fine-grained regions of code are transformed. By provid-
ing an end-to-end solution to meet these key require-
ments, the evaluated application suite ran 2.3× faster 
on average while using 3.0× less energy and maintaining 
accuracy greater than 90% in all cases. NPUs form a new 
class of trainable accelerators with potential implemen-
tations in both the digital and analog domains.
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Parrot transformation. As enumerated in Section 3.1, a tar-
get code region must satisfy the following conditions:

• The region must be approximable. That is, the program 
must incorporate application-level tolerance of impre-
cision in the results of the candidate region.

• The region must have a bounded number of statically 
identifiable inputs and outputs.

• The region must be hot to benefit from acceleration.

Although these criteria form a basis for programmers or 
compilers to identify nominees for the Parrot transforma-
tion, they do not guarantee that the resulting neural network 
will accurately approximate the code region. There is no 
simple criterion that makes a certain task (here a candidate 
region) suited for learning by a neural network. However, our 
experience and results suggest that empirical assessment is 
effective to classify a wide variety of approximate functions 
as NPU-suitable. Follow-on work can improve on empirical 
assessment by identifying static code features that tend to 
indicate suitability for learning-based acceleration.

Programmer effort. In this paper, the Parrot transfor-
mation requires programmers to (1) identify approximable 
code regions and (2) provide application inputs to be used 
for training data collection.

As with the other approaches that ensure the safety of 
approximate computation and avoid catastrophic failures,26 
the programmer must explicitly provide information for 
the compiler to determine which code regions are safe to 
approximate. As Section 3.2 outlines, future work should 
explore allowing the compiler to automatically infer which 
blocks are amenable to approximation.

Because NPU acceleration depends on representative 
test cases, it resembles a large body of other techniques 
that use programmer-provided test inputs, includ-
ing quality assurance (e.g., unit and integration test-
ing) and profile-driven compilers. Future work should 
apply traditional coverage measurement and improve-
ment techniques, such as test generation, to the Parrot 
transformation. In general, however, we found that it 
was straightforward to provide sufficient inputs for the 
programs we examined. This is in part because the can-
didate function is executed many times in a single appli-
cation run, so a small number of inputs can suffice. 
Furthermore, as Section 4.2 mentions, an online version 
of the Parrot transformation workflow could use samples 
of postdeployment inputs if representative tests are not 
available predeployment.

Quality and error control. The results in this paper sug-
gest that NPU acceleration can effectively approximate 
code with accuracy that is commensurate with state-of-
the-art approximate computing techniques. However, there 
is always a possibility that, for some inputs, the NPU com-
putes a significantly lower-quality result than the average 
case. In other words, without exhaustively exploring the 
NPU’s input space, it is impossible to provide formal guar-
antees about its worst-case accuracy.

This unpredictability is common to other approxima-
tion techniques.8, 26 As long as the frequency of low-quality 
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