
eScience: Computational Science
for the 21st Century

Ed Lazowska

Bill & Melinda Gates Chair in
Computer Science & Engineering

University of Washington

In Celebration of Lee Hood

October 2008

http://lazowska.cs.washington.edu/hood.pdf

 Lee’s visions
 The conjoining of biology and technology in a

virtuous cycle
 The commercialization of the gene sequencer
 Biology viewed as an information science
 The launching of the Human Genome Project
 The responsibility of scientists to contribute

to public understanding and education
 Systems biology and P4 medicine

This afternoon

 eScience
 The technologies enabling it
 Grand challenges for engineering and computer

science

eScience: Sensor-driven (data-driven)
science and engineering

Transforming science (again!)

Theory
Experiment

Observation

Theory
Experiment

Observation

Theory
Experiment
Observation

Theory
Experiment

Observation
Computational

Science

Protein interactions
in striated muscles

Tom Daniel lab

QCD to study
interactions of

nuclei

David Kaplan lab

Gas Stars

Dark Matter
Study of dark matter

Tom Quinn lab

Protein structure
prediction

David Baker lab

Theory
Experiment

Observation
Computational

Science
eScience

eScience is driven by data

 Massive volumes of data from sensors and networks
of sensors

Apache Point telescope,
SDSS

15TB of data
(15,000,000,000,000 bytes)

Large Synoptic Survey
Telescope (LSST)

30TB/day,
60PB in its 10-year

lifetime

Large Hadron Collider

700MB of data
per second,

60TB/day, 20PB/year

Illumina Genome
Analyzer

~1TB/day

Regional Scale Nodes of the
NSF Ocean Observatories

Initiative

2000 km of fiber optic cable
on the seafloor, connecting

thousands of chemical,
physical, and biological

sensors

The Web

20+ billion web pages
x 20KB = 400+TB

One computer can
read 30-35 MB/sec

from disk => 4 months
just to read the web

Point-of-sale terminals

eScience is about the analysis of data

 The automated or semi-automated extraction of
knowledge from massive volumes of data
 There’s simply too much of it to look at

The technologies of eScience

 Sensors and sensor networks
 Databases
 Data mining
 Machine learning
 Data visualization

eScience will be pervasive

 Computational science was a niche
 As an institution (e.g., a university), you didn’t need to excel

in order to be competitive
 eScience capabilities must be broadly available in any

organization
 If not, the organization will simply cease to be competitive

More about the enablement of eScience

 Ten quintillion: 10*1018

 The number of grains of rice
harvested in 2004

 Ten quintillion: 10*1018

 The number of grains of rice
harvested in 2004

 The number of transistors
fabricated in 2004

 The transistor
 William Shockley, Walter

Brattain and John Bardeen, Bell
Labs, 1947

 The integrated circuit
 Jack Kilby, Texas Instruments, and Bob Noyce,

Fairchild Semiconductor Corporation, 1958

 Moore’s Law
 Gordon Moore, 1965

 Processing power, historically
 1980: 1 MHz Apple II+, $2,000

 1980 also 1 MIPS VAX-11/780, $120,000
 2006: 2.4 GHz Pentium D, $800

 A factor of 6000

 Processing power, recently
 Additional transistors => more cores of

the same speed, rather than higher speed
 2008: Intel Core 2 Quad-Core 2.4 GHz,

$800

 Primary memory – same story, same reason (but no
multicore fiasco)
 1972: 1MB, $1,000,000
 1982: 1MB, $60,000
 2005: $400/GB (1MB, $0.40)

4GB vs. 2GB
(@400MHz) = $800

($400/GB)

 2007: $145/GB (1MB, $0.15)

4GB vs. 2GB
(@667MHz) = $290

($145/GB)

 2008: $49/GB (1MB, $0.05)

4GB vs. 3GB
(@800MHz) = $49

($49/GB)

 Moore’s Law drives sensors as well as processing
and memory
 LSST will have a
 3.2 Gigapixel camera

 Disk capacity, 1975-1989
 doubled every 3+ years
 25% improvement each year
 factor of 10 every decade
 Still exponential, but far less rapid than processor

performance
 Disk capacity since 1990

 doubling every 12 months
 100% improvement each year
 factor of 1000 every decade
 10x as fast as processor performance

 Only a few years ago, we purchased disks by the
megabyte (and it hurt!)

 Current cost of 1 GB (a billion bytes) from Dell
 2005: $1.00
 2006: $0.50
 2008: $0.25

 Purchase increment
 2005: 40GB
 2006: 80GB
 2008: 250GB

 Optical bandwidth today
 Doubling every 9 months
 150% improvement each year
 Factor of 10,000 every decade
 10x as fast as disk capacity
 100x as fast as processor performance

A connected region – then

A connected region – now

But eScience is equally enabled by
software for scalability and for discovery

 It’s likely that Google has several million machines
 But let’s be conservative – 1,000,000 machines
 A rack holds 176 CPUs (88 1U dual-processor boards), so

that’s about 6,000 racks
 A rack requires about 50 square feet (given datacenter

cooling capabilities), so that’s about 300,000 square feet of
machine room space (more than 6 football fields of real estate
– although of course Google divides its machines among dozens
of datacenters all over the world)

 A rack requires about 10kw to power, and about the same to
cool, so that’s about 120,000 kw of power, or nearly
100,000,000 kwh per month ($10 million at $0.10/kwh)
 Equivalent to about 20% of Seattle City Light’s generating

capacity

 Many hundreds of machines are involved in a single
Google search request (remember, the web is 400+TB)
 There are multiple clusters (of thousands of computers each)

all over the world
 DNS routes your search to a nearby cluster

 A cluster consists of Google Web Servers, Index Servers, Doc
Servers, and various other servers (ads, spell checking, etc.)

 These are cheap standalone computers, rack-mounted,
connected by commodity networking gear

 Within the cluster, load-balancing routes your search to a
lightly-loaded Google Web Server (GWS), which will
coordinate the search and response

 The index is partitioned into “shards.” Each shard indexes a
subset of the docs (web pages). Each shard is replicated,
and can be searched by multiple computers – “index servers”

 The GWS routes your search to one index server associated
with each shard, through another load-balancer

 When the dust has settled, the result is an ID for every doc
satisfying your search, rank-ordered by relevance

 The docs, too, are partitioned into “shards” – the
partitioning is a hash on the doc ID. Each shard contains the
full text of a subset of the docs. Each shard can be
searched by multiple computers – “doc servers”

 The GWS sends appropriate doc IDs to one doc server
associated with each relevant shard

 When the dust has settled, the result is a URL, a title, and a
summary for every relevant doc

 Meanwhile, the ad server has done its thing, the spell
checker has done its thing, etc.

 The GWS builds an HTTP response to your search and ships
it off

 Many hundreds of computers have enabled you to
search 400+TB of web in ~100 ms.

 Enormous volumes of data
 Extreme parallelism
 The cheapest imaginable components

 Failures occur all the time
 You couldn’t afford to prevent this in hardware

 Software makes it
 Fault-Tolerant
 Highly Available
 Recoverable
 Consistent
 Scalable
 Predictable
 Secure

How on earth would you enable mere mortals
write hairy applications such as this?

 Recognize that many Google applications have the
same structure
 Apply a “map” operation to each logical record in order to

compute a set of intermediate key/value pairs
 Apply a “reduce” operation to all the values that share the

same key in order to combine the derived data appropriately
 Example: Count the number of occurrences of each

word in a large collection of documents
 Map: Emit <word, 1> each time you encounter a word
 Reduce: Sum the values for each word

 Build a runtime library that handles all the details,
accepting a couple of customization functions from
the user – a Map function and a Reduce function

 That’s what MapReduce is
 Supported by the Google File System and the Chubby lock

manager
 Augmented by the BigTable not-quite-a-database system

 Does your application run in this environment?
 If not, figure out how to make it do so!

Predominant CS component

Significant CS component

The bottom line …

 The future really couldn’t be brighter
 Well, ignoring Iraq, the economy, the election, and the

failure of our education system

