Computer Architecture Futures 2007

Bob Colwell

FCRC June 2007
CompArch: Great Run So Far

1. World has paid top dollar for computers since 1952
2. Silicon has improved exponentially for several decades
 - Faster, denser, cooler, cheaper
3. CMOS let us ignore thermals/power for 30+ years
 - Gen purpose, anyway; embedded designers knew better long ago
4. Architects’ job was to leverage silicon improvements into single-thread time-to-solution performance boosts
 - Nice, simple, unambiguous
5. We did this by
 - Improving CPUs first
 - Clock rates, CPI, ILP, caches, OOO, bag of tricks
 - Chipsets, memory, I/O, platforms second
 - PCI, graphics, CDROMs, DVDs,
 - Anticipating new SW that continually set bar higher
CompArch: Current Status

Computer architecture field mutating

Underlying implementation tech changing

Historical progression halted by thermals

Big challenges

Possibility space is large, must tackle multiple issues

Multicore must fund industry into post-CMOS era

Software a huge concern

Usage models now subject to fashion trends

New implem contenders, but no clear favorite
Where We Started

- Earliest machines built around hardware limitations
- Later machines more capable yet compatible with predecessors
 - Sys/360 and Sys/370 1960’s
 - PDP-11 series 1970’s
 - Intel Architecture 1990’s to present
- 1970’s common wisdom: “SW will kill us, must bridge semantic gap”
- 1980’s-1990’s: performance is everything
 - Meanwhile embedded processors took over the world
- Only experimental/research machines willing to trade performance for programmability
 - Intel iAPX-432, Scheme, Symbol, Lisp machines, SBN, Blaauw/Brooks, Myers’ “semantic gap” books
Looking Back…

- Software creation didn’t kill us, but…
 - Viruses, worms, scam-ware take large toll on industry & internet
 - Security provided as afterthought at best
 - Large projects still fail because SW doesn’t work
 - Costs too much to design and maintain
 - Computer systems fail gracelessly
 - Still don’t know how to program MP

- HW: “every transistor must always work perfectly” attitude has scaled to today but will break badly at some point, maybe soon

Power is now Public Enemy #1
Meanwhile, SW & Bottlenecks Changed

- Java interpretation
- Web browsers use large fraction of cycles
- I/O is limiter

Worldwide, what is fraction of global cycles computers spend in idle loop?

- It’s got to be pretty close to 1.0
- Does that strike you as weird?
- Can we spend them to make active cycles more efficient?
 Search indexing…what else?
Usage Models Changing Radically

- Embedded & general computing merging
 - Cell phones & mobile computing have commenced an epic battle
 - HW/SW sales industry vs. subscription service industry

 Cell phone/cable chief advantage
 monthly service fees, huge economic juggernaut; disadvantage is focus on self instead of focus on customers

 Computer industry chief advantage
 innovation & aggressive cost reductions; disadvantage having to shift gears from historically lucrative products to less lucrative
Usage Models cont.

- Ubiquitous: always-on internet connectivity Goal #1
- Files being shared aren’t text: video, MP3, pictures, movies… it’s all about human interface
- Speech recognition still killer app of future (but will happen)
- 3D graphics, shading, texturing mandatory
- How have our architectures changed to comprehend all this? Not much. We rely on massive GP computing overkill to smash problem instead of finessing it in power-efficient way
Si Physics Gets Very Difficult

Variation-tolerant design
Statistical doping a problem
By 2014: 100B transistors: 20B unusable, 10B quit during product lifetime

How do you design reliable products based on unreliable components?

NASA has, but N-mod redundancy not useful here
Need extensive ability to detect, fix, work around errors
Synergistic with multicore? Maybe
The Leakage(s)...

![Graph showing leakage current (Ioff) vs. temperature for different technologies (90nm, 65nm, 45nm).](image1)

90nm MOS Transistor

![SEM image of a MOS transistor with gate dimensions and oxide thickness.](image2)

- **Gate Leakage (Watts)**
 - During Burn-in 1.4X Vdd
 - 1.5X Tr Growth
 - 2X Tr Growth

- **SD Leakage (Watts)**
 - 90nm MOS Transistor
 - 50nm SiO2

![Scatter plot showing gate leakage for different technologies and technologies.](image3)

- **Gate Leakage (Watts)**
 - 90nm, 65nm, 45nm
 - 0.25u, 0.18u, 0.13u

Shekhar Borkar, Intel, Micro-37
Projected Power (unconstrained)

Active and Leakage power will become prohibitive

Shekhar Borkar, Intel, Micro-37
CMOS Won’t Just Die Quietly, Of Course

Some “showstoppers” will turn out to have solutions

- Can probably count on pushing CMOS a generation or two beyond what’s visible right now
- But end-game in sight
Future CompArch Mileposts

- Comp arch is **system**, not just CPU
- Dependability: when emphasis is on system, not CPU, can no longer just “blame the software”; what can we architects do?
 - Systems must become inherently self-checking
 - Like phone system, or internet
 - Systems that survive own design errata
 - Systems that successfully communicate status to naïve users

What will float 1B units/yr industry in 10 years?
Lessons from cell phone industry
CompArch Mileposts cont.

- More single-thread efforts, focused on low power & multicore use
- Multicore systems, caches, memories, communications, whatever compilers want beyond traditional fast ISAs, all with power as 1st order constraint
- Reconfigurable fabrics
 - Standalone & as adjuncts to existing ISAs
- Streaming
 - Any technology that fits silicon so well must be explored!
Encouraging Signs @ ISCA07

Comp arch confs need to encourage & accept papers that assume imperfect implementation tech and having goals other than single thread time-to-solution perf

Good News: ISCA 2007 on its way to grappling with this new diversity (instead of arguing over SPEC benchmarks 😊)

2007 “new” topics:
- Transactional memory
- Power management
- Virtualization
- Quantum/physics engines
- Security

And some trusty old warhorses:
- Branch prediction
- Caches & memory
- Networking
- Fine grain parallelism

Intel seems awfully well-represented here...where is everybody?
More Work Needed

Research Needed

1. CMOS end-game electricals problems
2. Multicore SW
3. Power/thermals management
4. Thread and manycore sync: SW needs help
5. Expand synergies between embedded & GP
6. Design-in-the-Large
7. Grand Challenges
8. New technologies like reconfig fabrics, streaming machines, quantum, bio, nano

In order of decreasing urgency
Conclusions

1. Keep developing CMOS engines
 But be ready for its senility phase
 Multicore challenges abound (more SW than HW, but SW needs help)

2. Ready all plausible alternative techs

3. Absorb lessons from cell phones & embedded arenas

4. Remember that Moore’s Law is pushing us into Large System Design
 Design accordingly

5. When compatibility mandate has run its course, new opportunities arise: be ready
Q&A