
Fine�Grained Mobility in the Emerald System

Eric Jul� Henry Levy� Norman Hutchinson� and Andrew Black

Department of Computer Science

University of Washington

Seattle� WA �����

Abstract

Emerald is an object�based language and system designed for the construction of dis�
tributed programs� An explicit goal of Emerald is support for object mobility� objects in
Emerald can freely move within the system to take advantage of distribution and dynamically
changing environments� We say that Emerald has �ne�grainedmobility because Emerald ob�
jects can be small data objects as well as process objects� Fine�grained mobility allows us to
apply mobility in new ways but presents implementation problems as well� This paper dis�
cusses the bene�ts of �ne�grained mobility� the Emerald language and run�time mechanisms
that support mobility� and techniques for implementing mobility that do not degrade the
performance of local operations� Performance measurements of the current implementation
are included�

� Introduction

Process migration has been implemented or described as a goal of several distributed systems
���� ��� ��� ��� �� ��� �	
 In these systems� entire address spaces are moved from node to node

For example� a process manager might initiate a move to share processor load more evenly� or
users might initiate remote execution explicitly
 In either case� the running process is typically
ignorant of its location and una�ected by the move

During the last three years� we have designed and implemented Emerald ��� �	� a distributed
object
based language and system
 A principal goal of Emerald is to experiment with the use
of mobility in distributed programming
 Mobility in the Emerald system di�ers from existing
process migration schemes in two important respects
 First� Emerald is object
based and the
unit of distribution and mobility is the object
 While some Emerald objects contain processes�
others contain only data� arrays� records� and single integers are all objects
 Thus� the unit of
mobility can be much smaller than in process migration systems
 Object mobility in Emerald
subsumes both process migration and data transfer
 Second� Emerald has language support for
mobility
 Not only does the Emerald language explicitly recognize the notions of location and
mobility� but the design of conventional parts of the language �e
g
� parameter passing� is a�ected
by mobility

This paper appeared in ACM Trans� on Computer Systems ����� February ����� it was presented at the
��th ACM Symp� on Operating Systems Principles� December ���	� This work was supported in part by the
National Science Foundation under Grants No� MCS
������� and DCR
��
����� by K�benhavns Universitet �the
University of Copenhagen�� Denmark under Grant J�nr� �	�

�
� by a Digital Equipment Corporation External
Research Grant� and by an IBM Graduate Fellowship�

�

The advantages of process migration� which have been noted in previous work� include�

�
 Load sharing � By moving objects around the system� one can take advantage of lightly
used processors

�
 Communications performance � Active objects that interact intensively can be moved to
the same node to reduce the communications cost for the duration of their interaction

�
 Availability � Objects can be moved to di�erent nodes to provide better failure coverage

�
 Recon�guration � Objects can be moved following either a failure or a recovery� or prior
to scheduled down
time

�
 Utilizing special capabilities � An object can move to take advantage of unique hardware
or software capabilities on a particular node

Along with these advantages� �ne
grained mobility provides three additional bene�ts�

�
 Data Movement � Mobility provides a simple way for the programmer to move data from
node to node without having to explicitly package data
 No separate message passing or
�le transfer mechanism is required

�
 Invocation Performance � Mobility has the potential to improve the performance of re

mote invocation by moving parameter objects to the remote site for the duration of the
invocation

�
 Garbage Collection � Mobility can help simplify distributed garbage collection by moving
objects to sites where references exist ���� ��	

To our knowledge� the only other system that implements object mobility in a style similar to
Emerald is a recent implementation of distributed Smalltalk ��	

In addition to mobility and distribution� Emerald is intended to provide e�cient execution

We wanted to achieve performance competitive with standard procedural languages in the local
case and standard remote procedure call systems in the remote case
 These goals are not trivial
in a location
independent object
based environment
 To meet them� we have relied heavily on
an appropriate choice of language semantics� a tight coupling between the compiler and run
time
kernel� and careful attention to implementation

Emerald is not intended to run in large� long
haul networks
 We assume a local area network
with a modest number of nodes �e
g
� ����
 In addition� we assume that nodes are homogeneous
in the sense that they all run the same instruction set� and that they are trusted

In this paper we concentrate primarily on the language and run
timemechanisms that support
�ne
grained mobility while retaining e�cient intra
node operation
 First� we present a brief
overview of the Emerald language and system� and its mobility and location primitives
 A more
detailed description of object structure in Emerald can be found in ��	� and of the type system in
��	
 Second� we discuss the implementation of �ne
grained mobility in Emerald and new problems
that arise from providing such support
 Third� we present measurements of the implementation
and draw implications from the measurements and our design experience

�

� Overview of Emerald

As previously stated� an important goal of Emerald was explicit support for mobility
 From a
conceptual viewpoint� a more important goal was a single object model
 Object
based systems
typically lie at the ends of a spectrum� object
based languages such as Smalltalk ���	 and CLU ���	
provide small� local� data objects� object
based operating systems� like Hydra ���	 and Clouds
��	� provide large� active objects
 Distributed systems such as Argus ���	 and Eden ��	 that
support both kinds of object have a separate object de�nition mechanism for each
 Choosing the
right mechanism requires that the programmer know ahead of time all uses to which an object
will be put� the alternative is to accept the ine�ciency and inconvenience of using the �wrong�
mechanism� or to reprogram the object later as needs change
 For example� while programming
a Collaborative Editing System in Argus� Greif et al
 have observed that a designer can be forced
to use a Guardian where a cluster might be more appropriate ���	

The motivation for two distinct de�nition mechanisms is the need for two distinct implemen

tations
 In distributed object
based systems such as Clouds and Eden� a local execution of the
general invocation mechanism can take milliseconds or tens of milliseconds ���	
 A more restric

tive and e�cient implementation is appropriate for objects that are known to be always local�
for example� shared store can be used in preference to messages

While we believe in the importance of multiple implementations� we do not believe that these
need to be visible to the programmer
 In Emerald� programmers use a single object de�nition
mechanism with a single semantics for de�ning all objects
 This includes small� local� data
only
objects and active� mobile� distributed objects
 However� the Emerald compiler is capable of
analyzing the needs of each object and generating an appropriate implementation
 For example�
an array object whose use is entirely local to another object will be implemented di�erently from
an array that is shared globally
 The compiler produces di�erent implementations from the same
piece of code� depending on the context in which it is compiled ���	

The motivation for designing a new language� rather than applying these ideas to an existing
language� is that the semantics of a language often preclude e�cient implementation in either the
local or remote case
 In designing Emerald� we kept both implementations in mind
 Moreover�
Emerald�s unique type system allows the programmer to state either nothing or a great deal
about the use of a variable� in general� the more information the compiler has� the better the
code that it generates

We believe that the current Emerald implementation demonstrates the viability of this ap

proach and meets our goal of local performance commensurate with procedural languages
 Table �
shows the performance of several local Emerald operations executed on a MicroVAX II�� more
details on the compiler and its implementation can be found in ���	
 The �resident global invo

cation� time is for a global object �i
e
� one that can move around the network� when invoked by
another object resident on the same node

For comparison with procedural languages� a C procedure call takes ��
� microseconds� while
a Concurrent Euclid procedure call takes ��
� microseconds
 Concurrent Euclid is slower because�
like Emerald� it must make explicit stack over�ow checks on each call

�MicroVAX is a trademark of Digital Equipment Corporation�

�

Emerald Operation Example Time��s

primitive integer invocation i� i � �� �
�
primitive real invocation x� x� ���� �
�

local invocation localobject
no
op ��
�
resident global invocation globalobject
no
op ��
�

Table �� Timings of Local Emerald Invocations

��� Emerald Objects

Each Emerald object has four components�

�
 A unique network
wide name

�
 A representation� i
e
� the data local to the object� which consists of primitive data and
references to other objects

�
 A set of operations that can be invoked on the object

�
 An optional process

Emerald objects that contain a process are active� objects without a process are passive data
structures
 Objects with processes make invocations on other objects� which in turn invoke other
objects� and so on to any depth
 As a consequence� a thread of control originating in one object
may span other objects� both locally and on remote machines
 Multiple threads of control may
be active concurrently within a single object� synchronization is provided by monitors

Figure � shows an example de�nition of an Emerald object � in this case a simple directory
object called aDirectory
 The representation of the object consists of an array� a� of directory
elements
 The object exports three operations� Add� Lookup� and Delete
 The array a and the
operations are de�ned within a monitor to guarantee exclusive access to the array

��� Types in Emerald

The Emerald language supports the concept of abstract type ��	
 The abstract type of an object
de�nes its interface� the number of operations that it exports� their names� and the number and
abstract types of the parameters to each operation
 For example� consider the abstract type
de�nition for SimpleDirectoryType below�

const SimpleDirectoryType �� type SimpleDirectoryType

operation Lookup� String � � � Any �
operation Add � String� Any �

end SimpleDirectoryType

This de�nes an abstract type with two operations� Lookup and Add
 Lookup has an input
parameter of abstract type String and returns an object of abstract type Any
 We say that
an object conforms to an abstract type if it implements at least the operations of that abstract

�

object aDirectory
export Add� Lookup� Delete

monitor
const DirectoryElement �� record DirectoryElement

var name � String
var obj � Any

end DirectoryElement

const a �� Array�of �DirectoryElement��empty

function Lookup�n � String� � �o � Any�
var element � DirectoryElement

var i � Integer � a�lowerbound

loop
exit when i � a�upperbound

element � a�getelement �i�
if element�getname � n then

o � element�getobj

return
end if
i � i 	 �

end loop
o � nil

end Lookup

� Implementation of Add and Delete

end monitor
end aDirectory

Figure �� An Emerald Directory Object De�nition

�

type� and if the abstract types of the parameters conform in the proper way
 When an object
is assigned to a variable� the abstract type of that object must conform to the declared abstract
type of the variable
 All objects conform to type Any� since Any has no operation

Abstract types permit new implementations of an object to be added to an executing system

To use a new object in place of another� the abstract type of the new object must conform to
the required abstract type
 For example� we could assign the object aDirectory in Figure � to
a variable declared to have abstract type SimpleDirectoryType because aDirectory conforms to
SimpleDirectoryType
 Note that each object can implement a number of di�erent abstract types�
and an abstract type can be implemented by a number of di�erent objects

Emerald has no class�instance hierarchy� in contrast to Smalltalk
 Objects are not members
of a class� conceptually� each object carries its own code
 This distinction is important in a
distributed environment where separating an object from its code would be costly
 However�
identically implemented Emerald objects on each node do share code
 In the implementation�
the code is stored in a concrete type object
 Because concrete type objects are immutable� they
can be freely copied
 When an object is moved to another node� only its data is moved
 If
the object contains a process� part of that data will include the process� stack� but no code is
transferred

When a kernel receives an object� it determines whether a copy of the concrete type object
implementing that object already exists locally� if it does not� the kernel obtains a copy of it by
�nding one on another node using the location algorithm �described in Section �
��
 Typically
the concrete type will be available from the node that sent the object
 When a concrete type
object arrives� it is dynamically linked into the kernel � the compiler generates relocatable code
and su�cient symbol table information to make such dynamic linking possible
 This scheme
makes it possible to dynamically add new concrete types that implement existing abstract types

Concrete type objects are kept on a node for as long as there are objects referencing them� after
which they are garbage collected

��� Primitives for Mobility

Object mobility in Emerald is provided by a small set of language primitives
 An Emerald object
can�

� Locate an object �e
g
� �locate X� returns the node where X resides�

� Move an object to another node �e
g
� �move X to Y� co
locates X with Y�

� Fix an object at a particular node �e
g
� ��x X at Y��

� Un�x an object� making it mobile again following a �x �e
g
� �un�x X��

� Re�x an object� atomically performing an Un�x� Move� and Fix at a new node
�e
g
� �re�x X at Z��

The move primitive is actually a hint� the kernel is not obliged to perform the move and the
object is not obliged to remain at the destination site
 Fix and re�x have stronger semantics� if
the primitives succeed the object will stay at the destination until it is explicitly un�xed

�

Central to these primitives is the concept of location� which is encapsulated in a node object

A node object is an abstraction of a physical machine
 Location may be speci�ed by naming
either a node object or any other object
 If the programmer speci�es a non
node object� the
location implied is the node on which that object resides
 These concepts are similar to the
location dependent primitives in Eden ��	

A crucial issue when moving objects containing references is deciding how much to move ���	

An object is part of a graph of references� and one could move a single object� several levels of
objects� or the entire graph
 The simplest approach � moving the speci�ed object alone � may
be inappropriate
 Depending on how the object is implemented� invocations of the moved object
may require remote references that would have been avoided if other related objects had been
moved as well

The Emerald programmermaywish to explicitly specify which objects move together
 For this
purpose� the Emerald language allows the programmer to attach objects to other objects
 When
a variable is declared� the programmer can specify the variable to be an �attached variable�

For example� in the Emerald mail system� mail messages have four �elds� a sender� an array of
destination mailboxes� a subject line and a text string
 It makes sense for the array of destination
mailboxes to be attached to the mail message� and this could be speci�ed as�

attached var ToList � Array�of � Mailbox �

When the mail message is moved� the array pointed to at that time by ToList is moved with it

This may e�ect the performance of invocations on ToList� but not their semantics

Attachment is transitive� any object attached to a will also be moved
 For example� linked
structures may be moved as a whole by attaching the link �elds
 Attachment is not symmetric�
the object named by a can itself be moved� perhaps before it is invoked� and no attempt will be
made to move directory with it

��� Parameter Passing

An important issue in the design of distributed� object
based systems �as well as remote procedure
call systems� is the choice of parameter passing semantics
 In an object
based system� all variables
refer to other objects
 The natural parameter passing method is therefore call
by
object
reference�
where a reference to the argument object is passed
 This is in fact the semantics chosen by CLU
�where it is called call by sharing� ���	 and Smalltalk ���	

In a distributed object
oriented system� the desire to treat local and remote operations identi

cally leads one to use the same semantics
 However� such a choice could cause serious performance
problems� on a remote invocation� access by the remote operation to an argument is likely to
cause an additional remote invocation
 For this reason� systems such as Argus have required
that arguments to remote calls be passed by value� not by object
reference ���	
 Similarly� re

mote procedure call systems require call
by
value since addresses are context
dependent and have
no meaning in the remote environment

The Emerald language uses call
by
object
reference parameter passing semantics for all in

vocations� local or remote
 In both cases� the invoking code constructs an activation record
that contains references to the argument objects
 In the local case� the invoked object is called

�

directly and receives a pointer to the activation record for the invocation
 In the remote case�
the activation record must be reconstructed on the remote system� but the basic operation and
semantics are identical

Because Emerald objects are mobile� it may be possible to avoid many remote references by
moving argument objects to the site of a remote invocation
 Whether this is worthwhile depends
on ��� the size of an argument object� ��� other current or future invocations of the argument�
��� the number of invocations that will be issued by the remote object to the argument� and ���
the relative costs of mobility and local and remote invocation

In the current Emerald prototype� arguments are moved in two cases
 First� based on compile

time information� the Emerald compiler may decide to move an object along with an invocation

For example� small immutable objects are obvious candidates for moving because they can be
copied cheaply
 Obviously� it makes little sense to send a remote reference to a small string or
integer
 Second� the Emerald programmer may decide that an object should be moved based on
knowledge about the application
 To make this possible� Emerald provides a parameter passing
mode that we call call�by�move
 Call
by
move does not change the semantics� which is still call

by
object
reference� but at invocation time the argument object is relocated to the destination
site
 Following the call the argument object may either return to the source of the call or remain
at the destination site �we call these two modes call�by�visit and call�by�move� respectively�

Call
by
move is a convenience and a performance optimization
 Arguments could instead be
moved by explicit move statements
 However� providing call
by
move as a parameter passing
mode allows packaging of the argument objects in the same network packet as the invocation
message

As an example� consider another mail system example
 After composing a mail message
�whose �elds were described previously�� the user invokes the message�s Deliver operation�

operation Deliver

var aMailbox � Mailbox

if ToList�length � � then
aMailbox � Tolist�getelement � ToList�lowerbound �
aMailbox�Deliver � move self �

else
var i � Integer � ToList�lowerbound

loop
exit when i � ToList�upperbound

aMailbox � ToList�getelement� i �
aMailbox�Deliver � self �
i � i 	 �

end loop
end if

end Deliver

This operation delivers the message to all the mailboxes on the ToList
 However� in the
common case where there is only one destination� call
by
move is used to co
locate the mail
message with the �single� destination mailbox

�

activation record
of operation in A

activation record
of operation in B

activation record
of operation in C

��
��
object A�
��
��
object B�

��
��
object C�

Process A Stack
Base

�

Figure �� Process Stack and Activation Records

��� Processes� Objects� and Mobility

An Emerald process is a thread of control that is initiated when an object with a process is
created
 A process can invoke operations on its object or on any object that it can reference

We think of a process as being a stack of activation records� as shown in Figure �
 The thread
of control of one object�s process may pass through other objects� in the case of Figure �� the
process owned by object A invokes operations in objects A� B� and C

One can think of remote invocations in several ways
 In the traditional remote operation
model ���	� the sending process blocks and an existing remote process executes the operation�
possibly returning a value to the caller� which then continues execution
 In Emerald� when a
remote invocation occurs� we think of the process moving to the destination node and invoking
the object there
 Or� alternatively� the new activation record moves to the destination node to
become the base of a new segment of the process stack on that node
 The invocation stack of a
single Emerald process can therefore be distributed across several nodes

Mobility presents a special problem to this process structure
 For example� given the process
activation stack in Figure �� suppose that object B is moved to another node
 In that case� the
part of the thread that is executing in B must move along with B� that is� the activation record
must move
 Furthermore� when the operation in C terminates it must now return to a di�erent
node
 If object C were to move to a di�erent node from B� we would have three parts of the
process stack on three di�erent nodes
 Invocation returns would propagate control back from
node to node

One could imagine a di�erent scheme that left the stack intact� with invocations always
returning to the node on which the root process resides� at that point the situation could be
analyzed and control passed to the proper location
 The problem with this design is that it

�

leaves residual dependencies
 In the situation where objects C and B have moved to di�erent
nodes� it should be possible for control to return fromC to B even ifA is temporarily unreachable

Depending on B�s behavior� it may in fact be some time before a return to A or its node is actually
required
 Moving invocation frames along with the objects in which they execute ensures that
execution can continue as long as possible� and removes the computational burden from nodes
that do not need to be involved in a communication

� Implementing Mobility in Emerald

Adding process mobility to existing systems often proves to be a di�cult task
 One problem
is extracting the entire state of a process� which may be distributed through numerous operat

ing system data structures
 Second� the process may have variables that directly index those
operating system data structures� such as open �le descriptors� window numbers� etc

In a distributed object
based system� this problem may be somewhat simpli�ed
 Objects
cleanly de�ne the boundaries of all system entities
 Furthermore� since all resources are objects�
addressing is standardized and location
independent
 All objects� whether user
implemented
or kernel
implemented� are addressed indirectly using an object ID
 Operations are performed
through a standard invocation interface

While distribution and mobility increase the generality of a system they often reduce its per

formance
 Anyone building an object
based system must be sensitive to performance because
of the generally poor performance of such systems
 The implementation of mobility in Emerald
involved tradeo�s between the performance of mobility and that of more fundamental mecha

nisms� such as local invocation
 Where possible� we have made these tradeo�s in favor of the
performance of frequent operations� and we would typically be willing to increase the complexity
of mobility to save a microsecond or two on local invocation
 Furthermore� it takes a hundred
times longer to move an object than to perform a local invocation� adding � microseconds to the
object move time makes little relative di�erence� while � microseconds is �� percent of the local
invocation time
 The result of this philosophy is that� to a great extent� the existence of mobility
and distribution in Emerald do not interfere with the performance of objects on a single node

In the following sections� we describe some of the implementation of the Emerald kernel that
is relevant to mobility� and some of the tradeo�s that we have made in this design

��� Object Implementation and Addressing

To meet our goal of building a distributed object
based system with e�cient local execution� the
Emerald implementation relies heavily on shared memory
 We have implemented a prototype
of Emerald on top of DEC�s Ultrix system �which is based on Unix �
�BSD� running on �ve
DEC MicroVAX II workstations�
 The Emerald kernel and all Emerald objects on a single node
execute within a single Ultrix address space
 Emerald processes are lightweight threads scheduled
within that address space
 Protection among objects is guaranteed by the compiler both through
type checking and through run
time checks inserted into the code
 Objects that are resident on

�Unix is a trademark of AT�T� Ultrix is a trademark of Digital Equipment Corporation�

��

the same node address each other directly � an implementation style that has implications for
mobility

As previously stated� all objects are coded using a single object de�nition mechanism
 How

ever� based on its knowledge of an object�s use� the compiler is free to choose an appropriate
addressing mechanism� storage strategy� and invocation protocol ���	
 The Emerald compiler
uses three di�erent styles of object implementation�

� A global object can be moved independently� can be referenced globally in the network� and
can be invoked by objects not known at compile time
 Global objects are heap allocated

An invocation of such an object may require a remote invocation
 In Figure �� the object
aDirectory is implemented as a global object

� A local object is completely contained within another object� that is� a reference to the local
object is never exported outside the boundary of the enclosing object
 Such objects cannot
move independently� they always move along with their enclosing object
 Local objects are
heap allocated
 An invocation is implemented by a local procedure call or inline code
 The
array a in Figure � is not used outside of the directory and can thus be implemented as a
local object

� A direct object is a local object whose data area is allocated directly in the representation of
the enclosing object
 Direct objects are used mainly for primitive built
in types� structures
of primitive types� and other simple objects whose organization can be deduced at compile
time
 For example� all integers are direct objects

Figure � shows the various implementation and addressing options used by Emerald
 Variable
X names a global object and the value stored in X is the address of a local object descriptor

Each node contains an object descriptor for every global object for which references exist on that
node
 When the last reference to object m is deleted from node k� k�s object descriptor for m can
be garbage collected

An object descriptor contains information about the state and location of a global object
 The
�rst word of the object descriptor identi�es it as a descriptor and contains control bits indicating
whether the object is local or global �the G bit� and whether or not the object is resident �the R
bit�
 If the resident bit is set� the object descriptor contains the memory address of the object�s
data area� otherwise� the descriptor contains a forwarding address to the object as described in
Section �
�

Variable Y in Figure � names a local object
 The value stored in Y is the address of the
object�s data area
 The �rst word of this data area� like the �rst word of an object descriptor�
contains �elds identifying the area and indicating that this is a local object� i
e
� the data area
acts as its own descriptor
 Finally� variable Z names a direct object that was allocated within
the variable itself

Notice that within a single node� all objects can be addressed directly without kernel inter

vention
 Emerald variables contain references that are location dependent� that is� they have
meaning only within the context of a particular node
 For invocation of global objects� compiled
code �rst checks the resident bit to see if a local invocation can be performed directly
 If the
target object is not resident� the compiled code will trap to the kernel so that a remote invocation

��

Z� ���bit data

Y� address

data

tag j G j R�
Object Data Area

X� address tag j G j R

data pointer

�
Object Descriptor

tag j G j R

data

�
Object Data Area

Figure �� Emerald Addressing Structures

can be performed
 In this way� global objects can be invoked locally in time comparable to a
local procedure call

��� Finding Objects

Since objects are allowed to move freely� it is not always possible to know the location of a given
object� e
g
� when invoking it
 The run
time system must keep track of objects or at least be able
to �nd them when needed
 Keeping every node in the system up
to
date on the current location
of every object is expensive and unnecessary
 Instead� we use a scheme based on the concept of
forwarding addresses as described by Fowler ��	

Each global object is assigned a unique network
wide Object Identi�er �OID�� and each node
has a hashed access table mapping OIDs to object descriptors
 The access table contains an entry
for each local object for which a remote reference exists and each remote object for which a local
reference exists

As previously described� an object descriptor contains a forwarding address as well as the
object�s OID
 A forwarding address is a tuple � timestamp� node � where the node is the last
known location of the object and the timestamp speci�es the age of the forwarding address

Fowler ��	 has shown that it is su�cient to maintain the timestamp as a counter incremented
every time the object moves
 Given con�icting forwarding addresses for the same object� it is
simple to determine which one is most recent
 Every reference sent across a node boundary
contains the OID of the referenced object and the latest available forwarding address
 The
receiving node may then update its forwarding address for the referenced object� if required

If an object is moved from node A to node B� both A and B will update their forwarding

��

addresses for the object
 No action is taken to inform other nodes
 Should node C try to invoke
the object at A� A will forward the invocation message to B
 When the invocation completes� B
will send the reply to C with the new forwarding address piggybacked onto the reply message

An alternative strategy� which we did not adopt� would be to keep track of all nodes that have
references to a particular object
 Should that object move� update messages could be sent to
those nodes
 However� these extra messages could signi�cantly increase the cost of move and of
passing references
 For example� when an object reference is passed to a node for the �rst time�
that node would have to register with the node responsible for the object
 The DEMOS�MP
system used a forwarding address update scheme� and updating forwarding addresses was shown
to incur signi�cant overhead ���	
 In addition� sending update messages on every move will not
avoid the need for invocation forwarding� since update messages do not arrive immediately at
all destinations
 Our scheme places the cost of forwarding address maintenance on the current
users of a forwarding address

When it is necessary to locate an object� for example when the locate primitive is used� we
apply the following algorithm
 If the kernel has a forwarding address for the object� it asks the
speci�ed node whether the object is resident there� if it is we are done
 Otherwise� if that node
has a newer forwarding address� then we start over using that forwarding address
 However� if
that node is unreachable or has no better information� we resort to a broadcast protocol

The broadcast protocol is used whenever the previous step has failed to �nd the object
 The
searching kernel sends a �rst broadcast message to all other nodes seeking the location of the
object
 To reduce message tra�c� only a kernel that has the speci�ed object responds to the
broadcast
 If the searching kernel receives no response within a timelimit� it sends a second
broadcast� this time requesting a positive or negative reply from all other nodes
 All nodes
not responding within a short time are sent a reliable� point
to
point message with the location
request
 If every node responds negatively we conclude that the object is unavailable

When performing remote invocations� the invocation message is sent without locating the
target object �rst
 Only if there is a lost forwarding address somewhere along the path will the
location algorithm be used
 This optimizes for the common case where the object has not moved
or where a valid forwarding address exists

��� Finding and Translating Pointers

The use of direct memory addresses in Emerald �as opposed to indirect references� such as
those used in the standard Smalltalk implementation ���	� increases the performance of local
invocations
 Consequently� movement of an object involves �nding and modifying all of the
direct addresses� increasing the cost of mobility
 We feel that this is reasonable� since motion is
less frequent than invocation
 This design places the price of mobility on those who use it

Finding and translating references could be done in several ways
 For example� a tag bit in
each word could indicate whether or not the word contains an object reference
 Smalltalk ��
uses such bits to distinguish integers from references� but using tags increases the overhead of
arithmetic operations and complicates the implementation in general

Instead� the Emerald compiler generates templates for object data areas describing the layout
of the area
 The template is stored with the code in the concrete type object that de�nes the
object�s operations
 Each object data area contains a reference to the concrete type object so

��

const simpleobject �� object simpleobject

monitor
var myself � Any � simpleobject

var name � String � �Emerald�

var i � Integer � ��

operation GetMyName� �n 	 String�
n � name

end GetMyName
���

end monitor
end simpleobject

Figure �� Simple Emerald Object De�nition

address

address

��

monitor queue

monitor lock

code pointer

tag j G j R

Data Area

� Object Descriptor for simpleobject

� �Emerald�

�

Pointer

Data

Monitor

�

�

�

Template

Operation

Code

Concrete Type

Figure �� Data Area and Template Structure

that the code and the template can be found given only the data area
 In addition to their use
for mobility� templates are used for garbage collection and debugging� as these tasks must also
understand an object�s data area

As an example� consider the Emerald program shown in Figure � which de�nes a single object
containing three variables inside a monitor
 The variable myself contains a pointer to its own
object descriptor
 The variable name is initialized to point to a local string object
 The variable
i does not contain a pointer since integers are implemented as direct objects
 The corresponding
object data area and template are shown in Figure �

The data area for simpleobject contains�

� control information as described earlier

� a pointer to the code for simpleobject

� a lock for the monitor

��

� the variable i allocated as � bytes of data

� the variables myself and name� each allocated as a pointer to an object

The template does not describe the �rst two items since every data area contains them
 Each
template entry contains a count of the number of items described and the types of the items
�called template�types�
 Typical template
types are�

� Pointer� which is the address of an object� pointers must be translated if the object is
moved

� Data� which is direct data �e
g
� integers� stored as a number of bytes� these are not trans

lated

� MonitorLock� which controls access to the object�s monitor
 Monitors are implemented as
a Boolean and a queue of processes awaiting entry to the monitor
 A monitor must be
translated if the object is moved

Attached objects� which must move along with an object being moved� are indicated simply by
a bit in the template entry
 The compiler contiguously allocates variables that can be described
by identical template entries
 Therefore� the average template contains only two or three entries

In addition to data areas� the compiler must produce templates to describe activation records
so that active invocations can be moved along with objects
 A template for an activation record
describes three things� the parameters to the operation� the local variables used by the operation�
and the contents of the CPU registers

To simplify activation record templates the Emerald compiler does not permit registers to
change their template
type during an operation
 A register that contains a pointer must contain
a pointer for the lifetime of the invocation� however� the pointer register can point to di�erent
objects during its lifetime
 This restriction is similar to the segregation of address and data
registers in some architectures� but is more dynamic since the division is made for each speci�c
operation
 Without this restriction� we would need to have di�erent templates at di�erent points
in an operation�s execution � a design considered early in the project� but later abandoned as
unnecessary

��� Moving Objects

Using the addressing and implementation structure described above� the actual moving of an
object is rather straightforward
 Although some systems pre
copy objects to be moved for per

formance reasons ���	� we do not believe this is necessary in the Emerald environment for several
reasons
 First� unlike process mobility systems� we do not copy entire address spaces
 Second�
many objects contain only a small amount of data
 Third� even when an object with an active
process is moved� we may not need to copy any code

����� Moving Data Objects

Objects without active invocations are the simplest ones to move
 For these� the Emerald kernel
builds a message to be transmitted to the destination node
 At the head of this message is the

��

data area of the object to be moved
 As we previously described� this data area is likely to contain
pointers to both global and local objects
 Following the data area is translation information to
aid the destination kernel in mapping location
dependent addresses
 For global object pointers�
the kernel sends the OID� the forwarding address� and the address of the object�s descriptor on
the source node
 For local objects� the data area is sent along with its address

On receipt of this information� the destination kernel allocates space for the moved objects�
copies the data areas into the newly allocated space� and builds a translation table that maps
the original addresses into addresses in the newly allocated space
 OIDs are used to locate object
descriptors for existing global objects� or new object descriptors are created where necessary

The kernel then locates the template for each moved object� traverses its data area� and replaces
any pointers with their corresponding addresses found in the translation table

����� Moving Process Activation Records

As previously described in Section �
�� when an object is moved the activation records for pro

cesses executing its operations must also move
 This presents a particularly di�cult problem�
given an object to move� how do we know which activation records need to move with it� Finding
the correct activation records requires a list of all active invocations for a particular object

Several solutions are possible� but all have potentially serious performance implications
 The
simplest solution is to link each activation record to the object on each invocation and unlink it
on invocation exit
 Unfortunately� this would increase our invocation overhead by �� percent in
the current implementation
 On the other hand� �nding the invocations to move would require
only a simple list traversal

A second solution is to create the list only at move time
 This would eliminate the invocation

time cost but would require a search of all activation records on the node
 While we believe that
mobility should not increase the cost of invocation� exhaustive search seems to be an unacceptable
price to pay on every move

We have therefore adopted an intermediate solution
 We do maintain a list of all activation
records executing in each object� as in the �rst solution above
 However� on invocation the
activation record is not actually linked into this structure
 Instead� space is left for the links and
the activation record is marked as �not linked�� which is an inexpensive operation
 When an
Emerald process is preempted� its activation stack is searched for �not linked� activation records�
and these are then linked to the object descriptors of their respective objects

The search stops as soon as an activation record is found that has been linked previously
 In
this way� the work is only done at preemption time and its cost is related to the di�erence in
stack depth between the start and end of the execution interval� not to the number of invocations
performed

An operation must still unlink its activation record when it terminates
 Each return must
check for a queued activation record and dequeue it before freeing the record
 However� most
returns will �nd a �not linked� activation record� in which case no work need be done

Therefore� when an object moves we can �nd all activation records that must move with
it merely by traversing the linked list associated with the object
 These activation records are
moved in a manner similar to moving data areas as described above

��

��
��
object A

node �

�activation record
of operation in A

Process A Stack
Base

�

��
��
object B�

node �

activation record
of operation in B

Process A Stack
Segment �

�

��
��
object C�

node �

activation record
of operation in C

Process A Stack
Segment �

�

Figure �� Process Stack after Object Move

If necessary� the activation records are removed from the stack containing them
 This is
accomplished by splitting the stack into �at most� three parts� the �bottom� part which remains
on the source node� the �middle� part which is moved to the destination node� and the �top� part
which is copied onto a new stack segment on the source node
 The stack break points are found
using the templates for the activation records
 At each of the two stack breaks� invocation frames
are modi�ed to appear as if remote invocations had been performed instead of local invocations

Figure � shows the structure that would exist if object B from Figure � were moved from node
� to node �

����� Handling Processor Registers

An additional complexity in moving Emerald processes and activation records is the management
of processor registers
 The Emerald compiler attempts to optimize the addressing of objects by
storing local variables in registers instead of in the activation record
 In this way� some of the
processor registers may contain machine
dependent pointers and these must be translated when
the activation record moves

Unfortunately� the registers for a given activation record are not kept in one place
 Each invo

cation saves in its activation record a copy of registers that will be modi�ed by that invocation

Referring back to Figure �� suppose that the �rst invocation �of A� and the third invocation �of
C � both use register �
 In this case� a copy of A�s register � is saved in C�s activation record� as
it would be in any conventional stack
based language implementation

If object A moves� its activation record will move with it
 The stack will be segmented� and
the rest of the stack will be left behind
 Furthermore� the copy of A�s register stored in C �s
activation record will be incorrect when C returns� because the data that it refers to will be at

��

Operation Type Time�ms

local invocation �
���
kernel CPU time� remote invocation �
�
elapsed time� remote invocation ��
�
remote invocation� local reference parameter ��
�
remote invocation� call
by
move parameter ��
�
remote invocation� call
by
visit parameter ��
�
remote invocation� remote reference parameter ��
�

Table �� Remote Operation Timing

a di�erent location on a di�erent node

To handle this situation� the kernel sends a copy of the registers used in an invocation along

with the moving activation record
 First� the kernel �nds the template for the activation record
in the concrete type object of the invoked object
 Second� it determines which registers are
used as pointers in an activation record by looking at its template
 The templates for activation
records have special entries for registers and for the area of the activation record where registers
are saved
 Third� the kernel scans the invocation stack� looking for the next activation record
that has saved each of the registers
 In this way� copies of the current values of the registers
can be sent along with the record
 On the destination node� the registers are modi�ed using the
translation table �as described in Section �
�
�� and stored with the newly created stack segment

For each stack segment of an Emerald process� there is a separate image of the registers

When an invocation return crosses a stack segment boundary� the registers used are those stored
with the stack segment receiving control
 These are the possibly translated values of registers
that were computed when the stack was segmented

� Performance

Wemeasured the performance of Emerald�s mobility primitives on four MicroVAX II workstations
connected by a �� megabit�second Ethernet
 These primitives have been operational for only a
short time and no e�ort has yet been made to optimize their implementation

Table � shows the elapsed time cost of various Emerald operations
 The measured performance
�gures are averages of repeated measurements
 For the simplest remote invocation� the time spent
in the Emerald kernel is �
� milliseconds
 For historical reasons� we currently use a set of network
communications routines that provide reliable� �ow
controlled message passing on top of UDP
datagrams
 These routines are slow� the time to transmit ��� bytes of data and receive a reply
is about ��
� milliseconds
 Hence� the total elapsed time to send the invocation message and
receive the reply is ��
� milliseconds

Table � shows the bene�t of call
by
move for a simple argument object
 The table compares
the incremental cost of call
by
move and call
by
visit with the incremental cost of call by remote
reference
 The additional cost of call
by
move was � milliseconds while call
by
visit cost �
�
milliseconds
 These are computed by subtracting the time for a remote invocation with an

��

Parameter Passing Mode Time�ms

call
by
move �
�
call
by
visit �
�
call
by
remote
reference ��
�

Table �� Incremental Cost of Remote Invocation Parameters

argument reference that is local to the destination
 The call
by
visit time includes sending the
invocation message and the argument object� performing the remote invocation �which then
invokes its argument�� and returning the argument object with the reply
 Had the argument
been a reference to a remote object �i
e
� had the object not been moved�� the incremental cost
would have been ��
� milliseconds
 These measurements are somewhat of a lower bound because
the cost of moving an object depends on the complexity of the object and the types of objects it
names

Compared with the cost of a remote invocation� call
by
move and call
by
visit are worthwhile
for even a single invocation of the argument object
 As previously stated� the advantage of call

by
move depends on the size of the argument object� the number of invocations of the argument
object� and the local and remote invocation costs
 Emerald�s fast local invocation time� about
�� microseconds� easily recaptures the time for the move
 Even with the current unoptimized
implementation� call
by
move and call
by
visit would be worthwhile for a remote invocation cost
of under �� milliseconds

Moving a simple data object� such as the object in Figure �� takes about �� milliseconds

This time is less than the round
trip message time because the reply messages are �piggybacked�
on other messages �i
e
� each move does not require a unique reply�
 Moving an object with a
process is more complex� as previously stated� while Emerald does not need to move an entire
address space� it must send translation data so that the object can be linked into the address
space on the destination node
 The time to move a small process object with � variables is
�� milliseconds
 In this case� the Emerald kernel constructs a message consisting of about ���
bytes of information� including object references� immediate data for replicated objects� a stack
segment� and general process control information
 The process control information and stack
segment together consume about ��� bytes

� Summary

We have designed and implementedEmerald� an object
based language and system for distributed
programming
 Emerald is operational on a small network of VAX computers and has recently
been ported to the SUN ��
 Several applications have been implemented including a mail system�
a replicated directory system� and a calendar system

The goals of Emerald included�

� support for �ne
grained object mobility�

�SUN is a trademark of SUN Microsystems� Inc�

��

� e�cient local execution� and

� a single object model� suitable for programming both small� local data
only objects and
active� mobile� distributed objects

This paper has described the language features and run
time mechanisms that support �ne

grained mobility
 While processmobility �i
e
� the movement of complete address spaces� has been
previously demonstrated in distributed systems� we believe that object mobility� as implemented
in Emerald� has additional bene�ts
 Because the overhead of an Emerald object is commensurate
with its complexity� mobility provides a relatively e�cient way to transfer �ne
grained data from
node to node

The need for semantic support for mobility� distribution� and abstract types led us to design
a new language� and language support is a crucial part of mobility in Emerald
 While invocation
is location
independent� language primitives can be used to �nd and manipulate the location
of objects
 The programmer can declare �attached� variables� the objects named by attached
variables move along with the objects to which they are attached
 More important� on remote
invocations a parameter passing mode called call
by
move permits an invocation�s argument
object to be moved along with the invocation request
 Our measurements demonstrate the
potential of this facility to improve remote invocation performance while retaining the advantages
of call
by
reference semantics

Implementing �ne
grained mobilitywhile minimizing its impact on local performance presents
signi�cant problems
 In Emerald� all objects on a node share a single address space and objects
are addressed directly
 Invocations are implemented through procedure call or in
line code where
possible
 The result is that pointers must be translated when an object is moved
 Addresses
can appear in an object�s representation� in activation records� and in registers
 The Emerald
run
time system relies on compiler
produced templates to describe the format of these structures

A combination of compiled invocation code and run
time support is responsible for maintaining
data structures linking activation records to the objects they invoke
 A lazy evaluation of this
structure helps to reduce the cost of its maintenance

Through the use of language support and a tightly
coupled compiler and kernel� we believe
that our design has been successful in providing generalized mobility without much degradation
of local performance

� Acknowledgements

We would like to thank Edward Lazowska and Richard Pattis for extensive reviews of early
versions of this paper
 We also thank Brian Bershad� Carl Binding� Kevin Je�ay� Rajendra Raj�
and the referees for their helpful comments

References

��	 James E
 Allchin and Martin S
 McKendry
 Synchronization and recovery of actions
 In
Proceedings of the �nd Annual Symposium on Principles of Distributed Computing� pages
������ August ����

��

��	 Guy T
 Almes� Andrew P
 Black� Edward D
 Lazowska� and Jerre D
 Noe
 The Eden System�
A Technical Review
 IEEE Transactions on Software Engineering� SE
������������ January
����

��	 John K
 Bennett
 Distributed Smalltalk
 In Proceedings of the �nd Conference on Object�
Oriented Programming Systems� Languagues� and Applications� October ����

��	 Andrew Black� Norman Hutchinson� Eric Jul� and Henry Levy
 Object structure in the
Emerald system
 In Proceedings of the Conference on Object�Oriented Programming Systems�
Languages� and Applications� pages ������ October ����

��	 Andrew Black� Norman Hutchinson� Eric Jul� Henry Levy� and Larry Carter
 Distribution
and abstract types in Emerald
 IEEE Transactions on Software Engineering� ������ January
����

��	 Andrew P
 Black
 Supporting distributed applications� Experience with Eden
 In Proceed�
ings of the Tenth ACM Symposium on Operating System Principles� pages ������
 ACM�
December ����

��	 David A
 Butter�eld and Gerald J
 Popek
 Network tasking in the Locus distributed Unix
system
 In USENIX Summer �	
� Conference Proceedings� pages ������ ����

��	 Fred Douglis
 Process migration in the sprite operating system
 Technical Report UCB�CSD
������� Computer Science Division� University of California� Berkeley� February ����

��	 Robert J
 Fowler
 Decentralized Object Finding Using Forwarding Addresses
 PhD thesis�
University of Washington� December ����
 Department of Computer Science technical report
��
��
�

���	 Adele Goldberg and David Robson
 Smalltalk�
�
 The Language and Its Implementation

Addison
Wesley Publishing Company� Reading� Massachusetts� ����

���	 Irene Greif� Robert Seliger� and William Weihl
 Atomic data abstractions in a distributed
collaborative editing system
 In Proceedings of the Thirteenth Symposium on Principles of
Distributed Computing� January ����

���	 M
 Herlihy and B
 Liskov
 A value transmission method for abstract data types
 ACM
Transactions on Programming Languages and Systems� ������������� October ����

���	 Carl Hewitt
 The Apiary network architecture for knowledgeable systems
 In Conference
Record of the �	
� Lisp Conference� pages �������� Palo Alto� California� August ����

Stanford University

���	 Norman C
 Hutchinson
 Emerald
 An Object�Based Language for Distributed Programming

PhD thesis� University of Washington� January ����
 Department of Computer Science
technical report ��
��
��

���	 Edward D
 Lazowska� Henry M
 Levy� Guy T
 Almes� Michael J
 Fischer� Robert J
 Fowler�
and Stephen C
 Vestal
 The architecture of the Eden system
 In Proceedings of the
th
Symposium on Operating Systems Principles� pages �������� December ����

���	 Barbara Liskov
 Overview of the argus language and system
 Programming Methodology
Group Memo ��� M
I
T
 Laboratory for Computer Science� February ����

��

���	 Barbara Liskov� Russ Atkinson� Toby Bloom� Eliot Moss� Craig Scha�ert� Bob Schei�er� and
Alan Snyder
 CLU reference manual
 Technical Report MIT�LCS�TR
���� MIT Laboratory
for Computer Science� October ����

���	 Michael L
 Powell and Barton P
 Miller
 Process migration in DEMOS�MP
 In Pro�
ceedings of the Ninth ACM Symposium on Operating Systems Principles� pages �������

ACM�SIGOPS� October ����

���	 Richard F
 Rashid and George G
 Robertson
 Accent� A communication oriented network
operating system kernel
 In Proceedings of the Eighth Symposium on Operating System
Principles� pages ������ December ����

���	 Karen R
 Sollins
 Copying complex structures in a distributed system
 Master�s thesis� MIT�
May ����
 MIT�LCS�TR
���

���	 Eugene H
 Spa�ord
 Kernel Structures for a Distributed Operating System
 PhD thesis�
School of Information and Computer Science� Georgia Institute of Technology� May ����

Also Georgia Institute of Technology Technical Report GIT
ICS
�����

���	 Alfred Z
 Spector
 Performing remote operations e�ciently on a local computer network

CACM� �������������� April ����

���	 Marvin M
 Theimer� Keith A
 Lantz� and David R
 Cheriton
 Preemptable remote execution
facilities for the V
system
 In Proceedings of the Tenth ACM Symposium on Operating
Systems Principles� pages ����
 ACM�SIGOPS� December ����

���	 Stephen Vestal
 Garbage Collection
 An Exercise in Distributed� Fault�Tolerant Program�
ming
 PhD thesis� University of Washington� January ����
 Department of Computer
Science technical report ��
��
��

���	 William A
 Wulf� Roy Levin� and Samuel P
 Harbison
 HYDRA�C�mmp
 An Experimental
Computer System
 McGraw
Hill Book Company� ����

��

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

