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This morning

The nature of eScience
A bit of history
The University of Washington eScience Institute
Some example activities
A few observations
A plug for computing research



eScience: Sensor-driven (data-driven) 
science and engineering

Transforming science (again!)

Jim Gray



Dan Reed
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eScience is driven by data 
more than by cycles

Massive volumes of data from sensors and networks 
of sensors

Apache Point telescope, 
SDSS

80TB of raw image data 
(80,000,000,000,000 bytes)

over a 7 year period



Large Synoptic Survey 
Telescope (LSST)

40TB/day
(an SDSS every two days),

100+PB in its 10-year 
lifetime

400mbps sustained data 
rate between

Chile and NCSA



Large Hadron Collider

700MB of data
per second,

60TB/day, 20PB/year



Illumina
HiSeq 2000 
Sequencer

~1TB/day

Major labs 
have 25-100 

of these 
machines



Regional Scale 
Nodes of the NSF 

Ocean Observatories 
Initiative

1000 km of fiber 
optic cable on the 

seafloor, connecting 
thousands of 

chemical, physical, 
and biological 

sensors



The Web

20+ billion web pages 
x 20KB = 400+TB

One computer can 
read 30-35 MB/sec 

from disk => 4 months 
just to read the web



eScience is about the analysis of data

The automated or semi-automated extraction of 
knowledge from massive volumes of data

There’s simply too much of it to look at
It’s not just a matter of volume

Volume
Rate
Complexity / dimensionality



eScience utilizes a spectrum of computer 
science techniques and technologies

Sensors and sensor 
networks
Backbone networks
Databases
Data mining
Machine learning
Data visualization
Cluster computing 
at enormous scale



eScience is married to the Cloud:  Scalable 
computing and storage for everyone



eScience will be pervasive

Simulation-oriented computational science has been 
transformational, but it has been a niche

As an institution (e.g., a university), you didn’t need to excel 
in order to be competitive

eScience capabilities must be broadly available in any 
institution

If not, the institution will simply cease to be competitive



Some history, from astronomy

Apache Point telescope, 
SDSS

80TB of raw image data 
(80,000,000,000,000 bytes)

over a 7 year period



Project plan
SDSS was budgeted as a $16 million project
The software was to be written by astronomy faculty 
during the summers, when they weren’t teaching
Use Objectivity as the data store

Developed by Motorola for the Iridium satellite project



Project reality
$80 million
30% spent on software, plus Microsoft’s enormous 
contributions through Jim Gray and his collaborators
Research impact:  “If it weren’t for Jim Gray’s 
contributions, SDSS would have been more likely to yield 
100 research papers than the 5,000 that actually 
resulted.”

- Andy Connolly, University of Washington



How’d it come to be?



Large Synoptic Survey 
Telescope (LSST)

40TB/day
(an SDSS every two days),

100+PB in its 10-year 
lifetime

400mbps sustained data 
rate between

Chile and NCSA



Why?

[Andy Connolly, University of Washington]
SDSS LSST



NSF Review
December 15-17, 2009

Tucson, AZ

NSF Review
December 15-17, 2009
Tucson, AZ

LSST Data Management System is widely distributed

Base Site
Base Center
Co-located
Data Access Center (DAC)

Archive Center
Co-located
Data Access Center (DAC)

Archive Site
Headquarters Site
Systems Operations
Center (SOC)

Education and Public
Outreach Center (EPOC)

• Site
• A physical 

location/space 
that hosts DM 
centers

• Connected via 
dedicated, 
protected fiber 
optic circuits

• Center
• A DM functional 

capability hosted 
at a Site

[Andy Connolly, University of Washington, and LSST]



LSST Data Management System relies on large-scale 
parallelism

• With few exceptions, LSST 
pipeline processing is 
“embarrassingly parallel”

– 3024 parallel 
image readouts

– O(108) sky tiles
– O(109) objects

• Computational clusters 
are well matched to the 
available parallelism

– 5000 cores at 
Base

– 12000 (yr1) –
33000 (yr10) 
cores at Archive

• Middleware implements 
flexible pipeline/ 
production model of 
parallelism

[Andy Connolly, University of Washington, and LSST]



Project plan
Fully 30% of project budget is allocated to software



Data management in computational astrophysics
fopen()
fread()
fwrite()
fclose()
scp

– Jeff Gardner, UW eScience Institute

Each simulation generates a sequence of snapshots; 
each snapshot is a single flat file; analysis is via C or 
Fortran programs

But astronomy is substantially ahead of 
most other fields



Data management in biology

90% of all business data is maintained in spreadsheets
– Enrique Godreau, Voyager Capital



Top faculty across all disciplines understand 
and fear the coming data tsunami

Survey of 125 top 
investigators

“Data, data, data”
Flat files and Excel are 
the most common data 
management tools

Great for Microsoft …
lousy for science!

Typical science workflow:
2 years ago:  1/2 day/week
Now:  1 FTE
In 2 years:  10 FTE

Need tools, tools, tools!



The University of Washington 
eScience Institute

Motivating observations
Like simulation-oriented computational science, data-intensive 
science will be transformational
Unlike simulation-oriented computational science, data-
intensive science will be pervasive
Even more broadly than simulation-oriented computational 
science, data-intensive science draws on new techniques and 
technologies from computer science, statistics, and other 
fields
Cloud services are essential – “get computing out of the 
closet”
If we don’t lead in the development and application of these 
techniques and technologies, we’re going to lose



Mission
Help position the University of Washington at the forefront 
of research both in modern eScience techniques and 
technologies, and in the fields that depend upon these 
techniques and technologies

Strategy
Bootstrap a cadre of Research Scientists
Help leading faculty become exemplars and advocates
Broaden impact by aggressive community-building and sharing 
of expertise and facilities
Add faculty in key fields

Launched in July 2008 with $1 million in permanent 
funding from the Washington State Legislature

Many grants received since then



Technical staff

David Beck

Jeff Gardner Bill Howe

Erik Lundberg Chance Reschke



Environmental metagenomics / 
metatranscriptomics / metaproteomics

Ginger Armbrust



Study microbial populations sampled from the 
environment instead of individual organisms

Who is there? 
Which organisms make up the population?

What are they doing?
Which metabolic pathways are present and active (and who is 
doing what)?

Compare datasets
Across a transect (nearshore vs. deep ocean)
Before/after some event (e.g., Spring flooding)
Across salinity/temperature gradients
Diurnal cycles (day/night)



Environmental 
Sampling

Pubic annotation DBs

Sequencing

metadata

search hitscorrelate diversity 
w/environment?

correlate diversity 
w/nutrients?

find new genes?find new taxa and 
their distributions? compare meta*omes?

Pfams, TIGRfams,
COGs, FIGfams

Phylogenetic
analysis

taxonomic info



Environmental 
Sampling

Pubic annotation DBs

Sequencing

Phylogenetic
analysis

metadata

search hits

taxonomic info

correlate diversity 
w/environment?

correlate diversity 
w/nutrients?

find new genes?find new taxa and 
their distributions? compare meta*omes?

Pfams, TIGRfams,
COGs, FIGfams

SQL

“That took me a week with Excel!”
“I can do science again!”

SQLShare







Protein structure prediction and design

David Baker











IP licenses with UW

Arzeda Corporation
New enzymes to drive the industrial biotech revolution

Spin-out from UW research group of David Baker 
from the Dept. of Biochemistry

At the convergence of digital biology and green 
chemistry

World leader in the computational design and 
commercialization of novel, proprietary enzymes 

Computational 
enzyme design 
methodology in 
Rosetta

Incorporated in 
Seattle, WA

Seed investment, 
WRF Capital

2y research 
partnership w/ 
Dupont

March 08 Apr. 08 Apr. 09 June 09

NSF and 
USDA SBIR 
awards 

Feb. 10



Arzeda’s Platform: The Infrastructure Layer
Achieving Scalability through Cloud Computing 

Condor Scheduler

Condor 
Router

1000s of on-demand cores
1Gb to 4Gb RAM each
100Mb+ connectivity

1000s of on-demand cores
1Gb to 4Gb RAM each
100Mb+ connectivity

(integration with Condor will 
be operational late 2010)

Arzeda’s analysis cluster:

32 High-Perf. cores
4GB RAM each

10Gb Ethernet connectivity

ARZETTA™
(Arzeda’s design software)

Scalability: immediate scaling to 1000s of cores; only OpEx.
Price performance: currently $0.08 per hour, going down
More info on condor: http://www.cs.wisc.edu/condor/



Arzeda’s Cloud Computing Workflow
A Unified Interface to the Cloud based upon Open-Source Tools 

User defines input files for her/his 
enzyme design task

Arzetta™ Source Code (C++)
Cross-compiled 

(Linux/MacOS/Windows HPC server) 

Prepare Condor submission script on Linux Condor 
server 

mark the submission as ‘EC2’ or ‘Azure’
request a number of cores

Submit Condor script

Condor ‘startup’ hook scripts :
start-up instances
transfer executable to instances
transfer input files  

Condor ‘finalize’ hook scripts :
copy all the output data onto local filesystem
terminate instances

User analyzes the results 
(filters computational designs)

Uses Azure’s cloud 
filesystem (shared by all 

instances) 

Each instance uses only 
its local filesystem

(not S3)



Azure Ocean:Azure Ocean:
Visualization and Workflow for Ocean ScienceVisualization and Workflow for Ocean Science



[John Delaney, University of Washington]





John Delaney



Azure OceanAzure Ocean

COVE for 
Visualization

Trident for 
Processing

Azure for 
Data+ +



COVECOVE

Research into new interfaces for crossResearch into new interfaces for cross--disciplinary ocean sciencedisciplinary ocean science

Extensive instrument and cable layout for creating experimentsExtensive instrument and cable layout for creating experiments

Flexible terrain and image engine for visualizing siteFlexible terrain and image engine for visualizing site

True 3D/4D science dataset visualizationTrue 3D/4D science dataset visualization

Field tested in RSN observatory layout and on ocean expeditionsField tested in RSN observatory layout and on ocean expeditions

Cross platform and extensible with python and workflow systemsCross platform and extensible with python and workflow systems



TridentTrident

Microsoft Research scientific workflow systemMicrosoft Research scientific workflow system

Visual programming environment for connecting tasksVisual programming environment for connecting tasks

ScienceScience--specific task libraries including one for ocean sciencesspecific task libraries including one for ocean sciences

Automated provenance capture, monitoring, and fault toleranceAutomated provenance capture, monitoring, and fault tolerance

Runs on local system, Windows server, or HPC ClusterRuns on local system, Windows server, or HPC Cluster

Cross platform with Cross platform with SilverlightSilverlight and web service interfaceand web service interface



AzureAzure

MicrosoftMicrosoft’’s cloud computing platforms cloud computing platform

Provides storage and computing as payProvides storage and computing as pay--asas--youyou--go servicesgo services

From development standpoint, system looks like provisioned From development standpoint, system looks like provisioned VMVM’’ss

SQL, table, and blob (file system) storage models are includedSQL, table, and blob (file system) storage models are included

Access to storage via Access to storage via RESTfulRESTful HTTP interfaceHTTP interface



Azure OceanAzure Ocean

COVE + Trident + Azure provides visual analytics to scientistsCOVE + Trident + Azure provides visual analytics to scientists

Any component Any component –– VisualizationVisualization, , ComputingComputing, or , or DataData –– can be can be 
provisioned locally, on a server, or in the cloudprovisioned locally, on a server, or in the cloud

When on same machine, system APIs are leveraged for speedWhen on same machine, system APIs are leveraged for speed

When distributed, communication is through HTTP and When distributed, communication is through HTTP and RESTfulRESTful APIsAPIs

Flexible platform for the diverse ocean science needsFlexible platform for the diverse ocean science needs



Modeling protein interactions in 
striated muscles

Tom Daniel



Model the lever arm with multiple 
springs

Myosin’s lever-arm generates 
force

Power

Stroke

Incorporate into a 
multi-filament model

(an embarrassingly 
parallel Monte Carlo 

simulation)



Simple Python scripts automate the 
management of 1000s of simultaneous 

experiments using EC2 API

EC2



J. J. Rehr & R.C. Albers
Rev. Mod. Phys. 72, 621 (2000)

A “cluster to cloud” story:

Naturally parallel

Each CPU calculates a few
points in the energy grid

Loosely coupled

Very little communication
between processes

http://leonardo.phys.washington.edu/feff/

FEFF:  Real-space Green’s function code 
for electronic structure, x-ray spectra, …

John Rehr



63

• Is Cloud Computing feasible for on-demand, High-
Performance Computing (HPC) for scientific research 
in the face of declining budgets?

• Who is interested?
• Is it for everybody?
• What kind of code could benefit from it?
• How do we make it possible?

Challenge of NSF Grant

Disadvantages of Current HPC Approach

• Expensive infrastructure:
Big clusters = ~1000$/node + capital costs +

power + cooling + …
• Expensive  HPC staff & maintenance
• Need expertise in HPC to use efficiently   



Advantages of CC for Scientific Computing

• For “casual” HPC users:
– On-demand access without the need to purchase, 

maintain, or even understand HPCs
– Lease vs. buy: lease as many as needed at ~10¢/cpu-hr
– Plug & Play HPC scientific codes

• For developers:
– Scientific codes can be optimized and pre-installed

• For administrators & funding agencies:
– HPC access to a wider class of scientists at lower costs



Development Strategy

1. Develop AMI (Amazon Machine Image) customized for  
HPC scientific applications

2. Test single-instance performance

3. Develop shell-scripts that make the EC2 look and run like 
a local HPC cluster (”virtual supercomputer on a laptop”) 

4. Test parallel performance



FEFFMPI EC2 AMI

• Standard Linux AMI:
Fedora 8 32-bit distribution with Gnu 
FORTRAN compilers (gfortran and g77)

• AWS tools for the EC2: AMI, API and S3 tools
• LAM 7.1.4 for parallel MPI codes
• Java Runtime Environment 6
• Java Development Kit 1.6
• EC2 Cluster tools
• FEFF8.4 serial and parallel versions
• JFEFF graphical interface for FEFF8.4

Custom Linux distribution replicated on
each instance in cluster



Serial Performance of FEFF on EC2

Virtual machine performance similar to “real”



Xeon E5345 (2.33 GHz)

½ Opteron 2218HE
(“1.3” GHz)

Xeon E5345 (2.33 GHz)

Xeon E5345 (2.33 GHz)

Serial Performance of Gasoline on EC2

Virtual

Virtual

Virtual

Real

No penalty from virtualization



1. Start cluster
2. Configure nodes

Current MPI Scenario

EC2 Compute Instances

User interacts with 
control workstation

MPI Master

startd

MPI Slave

startd

MPI Slave

startd

Control Workstation

ec2_clust_*



UW EC2 Cluster Tools

Tools in the local control machine

Name Function Analog
ec2_clust_launch N Launches cluster with N instances boot
ec2_clust_connect Connect to a cluster ssh
ec2_clust_put Transfer data to EC2 cluster scp
ec2_clust_get Transfer data from EC2 cluster scp
ec2_clust_list List running clusters
ec2_clust_terminate Terminate a running cluster shutdown

The tools hide a lot of the “ugliness”:

ec2_clust_connect

ssh -i /home/fer/.ec2_clust/.ec2_clust_info.7729.r-
de70cdb7/key_pair _fdv.pem root@ec2-72-44-53-
27.compute-1.amazonaws.com



FEFFMPI on EC2

EC2 works well for highly parallelized applications like FEFF 

EC2

UW



SkyScraper: Scalable Image Registration and 
Query in the Cloud with MapReduce

Andy Connolly

M1

M2

M3

R1

M1

R1 R2

M2 M3 M4



Horizon: Where the Ocean meets the Cloud

• Client + Cloud:  VisTrails, 
GridFields, 400-node Hadoop 
Cluster (NSF CluE program)

• Need interactive “climatologies”: Decade-scale averages under different 
assumptions

• Must manipulate 40 terabytes the same way you manipulate 40 
megabytes:  efficiently, interactively, visually

Bill Howe Claudio Silva Juliana Freire

http://clue.cs.washington.edu/



“EC2 is Google Docs for developers”

The cloud is the ultimate collaborative development 
environment

A shared environment outside of the jurisdiction of over-
protective (or otherwise non-responsive) sysadmins
No bugs closed as “can’t replicate”

Example:  New software for serving oceanographic 
model results, requiring collaboration between UW, 
OPeNDAP.org, and OOI

Bill Howe

Azure BPOS
“EC2 is Google Docs for developers”



Waited two weeks for credentials to be established
Gave up, spun up an EC2 instance, were rolling within 
an hour

Similarly, Seattle’s Institute for 
Systems Biology uses EC2/S3 for 
sharing computational pipelines



Observations

Flat files and Excel spreadsheets are the most 
common data management tools for scientists

Data management workflows are choking science
Even superb scientists are doing things you wouldn’t 
believe

Such as manual joins on huge spreadsheets, exemplified by 
Ginger Armbrust’s environmental metagenomics lab

Simple tools can change their lives
E.g., the spreadsheet->SQLShare and web SQL query 
interface for Armbrust’s lab

Many of these tools have broad applicability
E.g., the above, and the Condor-to-cloud interface designed 
for Arzeda



Workflow management is hugely important; building 
on commercial workflow engines is the smart approach

Trident has been widely adopted
Flexible client+cloud architectures are winners –
there is no “one size fits all”

COVE + Trident + Azure, Horizon
A huge proportion of interesting science is, or can be 
made, embarrassingly parallel – many “HPC”
researchers can thrive in the cloud

Tom Daniel’s Monte Carlo muscle simulations
John Rehr’s FEFF and Gasoline



Many science apps lend themselves to MapReduce / 
Dryad – style computation

Andy Connolly’s SkyScraper
Bill Howe’s Horizon

“EC2 is Google Docs for developers”
UW / OPeNDAP.org / OOI
Institute for Systems Biology



[Werner Vogels, Amazon.com]



[Werner Vogels, Amazon.com]



[Werner Vogels, Amazon.com]



[Werner Vogels, Amazon.com]



Advances in computing change the way we live, work, 
learn, and communicate
Advances in computing drive advances in nearly all 
other fields
Advances in computing power our economy

Not just through the growth of the IT industry – through 
productivity growth across the entire economy

Computer science:  Changing the world



Forty years ago …





[Peter Lee, DARPA, and Pat Lincoln, SRI]





With forty years hindsight, which had the 
greatest impact?

Unless you’re big into Tang and Velcro (or sex and 
drugs), the answer is clear …

And so is the reason …

EXPONENTIALS  US



The past thirty years …











The most recent ten years …

Search
Scalability
Digital media
Mobility
eCommerce
The Cloud
Social networking and crowd-sourcing



The cloud:  A triumph of computing research

Enormous volumes of data
Extreme parallelism
The cheapest imaginable components

Failures occur all the time
You couldn’t afford to prevent this in hardware

Software makes it
Fault-Tolerant
Highly Available
Recoverable
Consistent
Scalable
Predictable
Secure





Predominant CS component

Significant CS component



We put the “smarts” in …

Smart homes
Smart cars
Smart bodies
Smart robots
The data deluge (smart science)
Virtual and augmented reality
Smart crowds and human-computer systems



Is this a great time, or what?!?!


