
High Speed Switch Scheduling for Local Area Networks

Thomas E� Anderson

Computer Science Division

University of California

Berkeley� CA �����

Susan S� Owicki� James B� Saxe� and Charles P� Thacker

Systems Research Center

Digital Equipment Corporation
Palo Alto� CA �����

Abstract

Current technology trends make it possible to build communication networks that can sup�

port high performance distributed computing� This paper describes issues in the design of a

prototype switch for an arbitrary topology point�to�point network with link speeds of up to one

gigabit per second� The switch deals in �xed�length ATM�style cells� which it can process at a

rate of �� million cells per second� It provides high bandwidth and low latency for datagram

tra�c� In addition� it supports real�time tra�c by providing bandwidth reservations with guar�

anteed latency bounds� The key to the switch�s operation is a technique called parallel iterative

matching� which can quickly identify a set of con�ict�free cells for transmission in a time slot�

Bandwidth reservations are accommodated in the switch by building a �xed schedule for trans�

porting cells from reserved �ows across the switch	 parallel iterative matching can �ll unused

slots with datagram tra�c� Finally� we note that parallel iterative matching may not allocate

bandwidth fairly among �ows of datagram tra�c� We describe a technique called statistical

matching� which can be used to ensure fairness at the switch and to support applications with

rapidly changing needs for guaranteed bandwidth�

� Introduction

Over the past few years� several technology trends have converged to provide an opportunity for high
performance distributed computing� Advances in laser and �ber optic technology have driven feasible
link throughputs above a gigabit per second� Dynamic RAM chips have become cheap enough to
be cost�e�ective at providing the large amounts of bu�ering needed at these very high link speeds�
Moreover� quick routing and switching decisions are possible with current CMOS technology�

In combination� these trends make it possible to construct a practical local area network using
multiple switches and gigabit�per�second point�to�point �ber links con�gured in an arbitrary topol�
ogy� This kind of a network has several advantages �Schroeder et al� ���� In contrast to networks like
Ethernet �Metcalfe 	 Boggs
�� that use a broadcast physical medium� or networks like FDDI �Ame
�
� Ame ��� based on a token ring� arbitrary topology point�to�point networks o�er i� aggregate
network bandwidth that can be much larger than the throughput of a single link� ii� the ability to
add throughput incrementally by adding extra switches and links to match workload requirements�
iii� the potential for achieving lower latency� both by shortening path lengths and by eliminating
the need to acquire control over the entire network before transmitting� and iv� a more �exible
approach to high availability using multiple redundant paths between hosts�

�

This paper studies the architectural issues in building high performance switches for arbitrary
topology local area networks�

High performance networks have the potential to change the nature of distributed computing�
Low latency and high throughput communication allow a much closer coupling of distributed systems
than has been feasible in the past� with previous generation networks� the high cost of sending
messages led programmers to carefully minimize the amount of network communication �Schroeder
	 Burrows ���� Further� when combined with today�s faster processors� faster networks can enable
a new set of applications� such as desktop multimedia and the use of a network of workstations as
a supercomputer�

A primary barrier to building high performance networks is the di�culty of high speed switching
� of taking data arriving on an input link of a switch and quickly sending it out on the appropriate
output link� The switching task is simpli�ed if the data can be processed in �xed�length cells� as
discussed in Section ���� Given �xed�length cells� switching involves at least two separate tasks�

� scheduling � choosing which cell to send during each time slot� when more than one cell is
destined for the same output� and

� data forwarding � delivering the cell to the output once it has been scheduled�

Many high speed switch architectures use the same hardware for both scheduling and data
forwarding� Starlite �Huang 	 Knauer ���� Knockout �Yeh et al� �
�� and Sunshine �Giacopelli et al�
��� are just a few of the switches that take this approach� If the input and output links of a switch
are connected internally by a multi�stage interconnection network� the internal network can detect
and resolve con�icts between cells as they work their way through the switch�

We take a di�erent approach� We argue that for high speed switching� both now and in the
future� switch scheduling can pro�tably be separated from data forwarding� By doing this� the
hardware for each function can be specialized to the task� Because switch cost is dominated by
the optical components needed to drive the �ber links� the added cost of separate hardware to do
scheduling is justi�ed� particularly if link utilization is improved as a result�

We observe that switch scheduling is simply an application of bipartite graph matching � each
output must be paired with at most one input that has a cell destined for that output� Unfortunately�
existing algorithms for bipartite matching are either too slow to be used in a high speed switch or
do not maximally schedule the switch� sacri�cing throughput�

A primary contribution of this paper is a randomized parallel algorithm� called parallel iterative
matching� for �nding a maximal bipartite match at high speed� In practice� we run the algorithm
for a �xed short time� in most cases it �nds a maximal match�� Parallel iterative matching can be
e�ciently implemented in hardware for switches of moderate scale� Our work is motivated by the
needs of AN�� an arbitrary topology network under development at Digital�s Systems Research Cen�
ter� we expect to begin using the network in mid������ Using only o��the�shelf �eld�programmable
gate array technology �Xil ���� the AN� switch using parallel iterative matching will be able to
schedule a standard ���byte ATM cell out each link of a �� by �� crossbar switch in the time for one
cell to arrive at a link speed of one gigabit per second� This requires scheduling over �
 million cells
per second� Cell latency across the switch is about ��� microseconds in the absence of contention�
The switch does not drop cells� and it preserves the order of cells sent between a pair of hosts� If
implemented in custom CMOS� we expect our algorithm to scale to larger switches and faster links�

Supporting the demands of new distributed applications requires more from a network than
simply high throughput or low latency� The ability to provide guaranteed throughput and bounded
latency is crucial to multimedia applications �Ferrari 	 Verma ���� Even for applications that do
not need guarantees� predictable and fair performance is often important to higher layers of protocol
software �Jain ��� Zhang ����

�

Parallel iterative matching does not by itself provide either fairness or guaranteed throughput�
We present enhancements to our algorithm to provide these features� These enhancements pull from
the bag of tricks of network and distributed system design � local decisions are more e�cient if they
can be made independently of global information� purely static scheduling can simplify performance
analysis� and �nally� randomness can de�synchronize decisions made by a large number of agents�

The remainder of the paper discusses these issues in more detail� Section � puts our work in
context by describing related work� Section � presents the basic parallel scheduling algorithm� Sec�
tion � explains how we provide guaranteed bandwidth and latency using the AN� switch� Section �
describes a technique called statistical matching� which uses additional randomness in the switching
algorithm to support dynamic allocation of bandwidth� Section � provides a summary of our work�

� Background and Related Work

Our goal is to build a local area network that supports high performance distributed computing� for
this� a network must have high throughput� low latency� graceful degradation under heavy workloads�
the ability to provide guaranteed performance to real�time applications� and performance that is both
fair and predictable� The network should be capable of connecting anywhere from tens to thousands
of workstations�

The network we envision consists of a collection of switches� links� and host network controllers�
Data is injected into the network by the controller in a sending host� after traversing a sequence
of links and switches� the data is delivered to the controller at the receiving host� Each link is
point�to�point� connecting a single switch port to either a controller or to the port of another switch�
Switches can be connected to each other and to controllers in any topology�

Routing in the network is based on �ows� where a �ow is a stream of cells between a pair of
hosts� Our network also supports multicast �ows� but we will not discuss that here�� There may
be multiple �ows between a given pair of hosts� for example� with di�erent performance guarantees�
Each cell is tagged with an identi�er for its �ow� A routing table in each switch� built during network
con�guration� determines the output port for each �ow� All cells from a �ow take the same path
through the network�

This paper focuses on the algorithms to be used for switch scheduling� But we must �rst provide
context for our work by discussing other aspects of the AN� switch design� including switch size�
the con�guration of the switch�s internal interconnect� �xed�length cells vs� variable�length packets�
and bu�er organization�

��� Switch Size

A key parameter in designing a point�to�point network is the size of each switch� Part of the host�
to�host interconnect is provided by the �ber optic links between switches and part by the silicon
implementing the internal interconnect within each switch� In designing a network� we need to �nd
an appropriate balance between using a large number of small switches or a small number of large
switches�

At one extreme� very small switches are not cost�e�ective� The largest component in the cost of
a local area �ber optic network comes from the optoelectronic devices in each switch that drive the
�ber links� These devices account for almost half the cost of the �� by �� AN� switch� we discuss
the component costs of the AN� switch in more detail in Section ���� A smaller switch size requires
the network to have a larger number of �ber connections and thus a larger number of optoelectronic
devices�

On the other hand� very large switches are often inappropriate for local area networks� While it
is feasible to build switches with thousands of ports� such a switch would be unduly costly for sites

�

that have only dozens of workstations� Smaller switches allow capacity to be added incrementally
at low cost� smaller switches can also lower the cost of availability by making it less expensive for
the network to have fully redundant paths�

For these reasons� our algorithms are designed for switches of moderate scale� in the range of
�� by �� to �� by ��� We expect that it will be some time before workstations are able to use a
full gigabit�per�second link� for AN�� we are designing a special concentrator card to connect four
workstations� each using slower speed link� to a single AN� switch port� A single �� by �� AN�
switch can thus connect up to �� workstations�

��� Internal Interconnect

Once the switch size has been decided� there are several approaches to designing the internal data
path needed to transport cells from the inputs to the outputs of the switch� Probably the simplest
approach to transporting data across a switch is to use shared memory or a shared bus� We do not
pursue these techniques here� because they do not seem feasible for even moderate�sized switches
with gigabit�per�second links� much less for the faster link speeds of the future�

Another uncomplicated approach is to connect inputs to outputs via a crossbar� using some
external logic to control the crossbar� i�e�� to decide which cells are forwarded over the crossbar
during each time slot and to set up the crossbar for those cells� In the absence of a fast algorithm�
however� scheduling the crossbar quickly becomes a performance bottleneck for all but the smallest
switches�

Many switch architectures call for the switch�s internal interconnection to be self�routing �Ahmadi
	 Denzel ���� The switch is organized internally as a multistage network of smaller switches arranged
in a butter�y� or more generally� in a banyan �Patel
��� Cells placed into a banyan network are
automatically routed and delivered to the correct output based solely on the information in the cell
header�

Unlike a crossbar� however� banyan networks su�er from internal blocking� A cell destined for
one output can be delayed or even dropped� because of contention at the internal switches with
cells destined for other outputs� This makes it di�cult to provide guaranteed performance�

Internal blocking can be avoided by observing that banyan networks are internally non�blocking
if cells are sorted according to output destination and then shu�ed before being placed into the
network �Huang 	 Knauer ���� Thus� a common switch design is to put a Batcher sorting net�
work �Batcher ��� and a shu�e exchange network in front of a normal banyan network� As with a
crossbar� a cell may be sent from any input to any output provided no two cells are destined for the
same output�

Our scheduling algorithm assumes that data can be forwarded through the switch with no in�
ternal blocking� this can be implemented using either a crossbar or a batcher�banyan network� Our
prototype uses a crossbar because it is simpler and has lower latency� Even though the hardware for
a crossbar for an N by N switch grows as ON��� for moderate scale switches the cost of a crossbar
is small relative to the rest of cost of the switch� In the AN� prototype switch� for example� the
crossbar accounts for less than �� of the overall cost of the switch�

��� Fixed�Length Cells vs� Variable�Length Packets

Within our network� data is transmitted in �xed�length cells rather than variable�length packets�
We support standard ���byte ATM cells with ��byte cell headers� although a ����byte cell size with
��byte cell headers would have simpli�ed our implementation� Applications may still deal in variable�
length packets� It is the responsibility of the network controller at the sending host to divide packets
into cells� each containing the �ow identi�er for routing� the receiving controller re�assembles the
cells into packets�

�

��� � � � � � � � � � � � � � � �

��� � � � � � � � � � � � � � � �

��� � � � � � � � � � � � � � � �

��� � � � � � � � � � � � � � � �

Figure �� Performance Degradation Due to FIFO Queueing

Using �xed�length cells has a number of advantages for switch design� despite the disadvantages
that the switch must make more frequent scheduling decisions and that a greater proportion of the
link bandwidth is consumed by the overhead of cell headers and internal fragmentation� The chief
gain of using cells is that performance guarantees are easier to provide when the entire crossbar is
re�con�gured after every cell time slot� In addition� �xed�length cells simplify random access bu�er
management discussed in the next sub�section�� Using cells can also improve packet latency for
both short and long packets� Short packets do better because they can be interleaved over a link
with long packets� a long packet cannot monopolize a connection for its entire duration� For long
packets� cells simulate the performance of cut�through �Kermani 	 Kleinrock
�� while permitting
a simpler store�and�forward implementation�

��� Bu�er Organization

Even with an internally non�blocking switch� when several cells destined for the same output arrive
in a time slot� at most one can actually leave the switch� the others must be bu�ered� There are
many options for organizing the bu�er pools� For example� bu�ers may be placed at the switch
inputs or outputs� when placed at the inputs they may be strictly FIFO or allow random access�
There has been considerable research on the impact of these alternatives� In this sub�section we
review the work that is most relevant to our switch design�

The simplest approach is to maintain a FIFO queue of cells at each input� only the �rst cell
in the queue is eligible for being transmitted during the next time slot� The di�culty with FIFO
queueing is that when the cell at the head of an input queue is blocked� all cells behind it in the queue
are prevented from being transmitted� even when the output link they need is idle� This is called
head�of�line �HOL� blocking� Karol et al� ����
� have shown that head�of�line blocking limits switch
throughput to ��� of each link� when the destinations of incoming cells are uniformly distributed
among all outputs�

Unfortunately� FIFO queueing can have even worse performance under certain tra�c patterns�
For example� if several input ports each receive a burst of cells for the same output� cells that arrive
later for other outputs will be delayed while the burst cells are forwarded sequentially through the
bottleneck link� If incoming tra�c is periodic� Li ������ shows that the aggregate switch throughput
can be as small as the throughput of a single link� even for very large switches� this is called stationary
blocking� Figure � illustrates this e�ect�� The worst case in Figure � occurs when scheduling priority
rotates among inputs so that the �rst cell from each input is scheduled in turn� The example assumes
for simplicity that cells can be sent out the same link they came in on� even if this is not the case�

�In this and other �gures in this paper� input ports on the left and output ports on the right are shown as distinct
entities� However� in an AN� switch� the ith input and the ith output actually connect to the same full�duplex �ber
optic link� The small boxes represent cells queued at each input� the number in each box corresponds to the output
destination of that cell�

�

aggregate switch throughput can still be limited to twice the throughput of a single link� Note that
without the restriction of FIFO queueing � that is� if any queued cell is eligible for forwarding � all
of the switch�s links could be fully utilized in steady state�

Various approaches have been proposed for avoiding the performance problems of FIFO input
bu�ers� One is to expand the internal switch bandwidth so that it can transmit k cells to an output
in a single time slot� This can be done by replicating the crossbar or� more typically� in a batcher�
banyan switch by replicating the banyan part of the switch k times �Huang 	 Knauer ���� Since
only one cell can depart from an output during each slot� bu�ers are required at the outputs with
this technique� In the limit� with enough internal bandwidth in an N by N switch to transmit N
cells to the same output� there is no need for input bu�ers� since any pattern of arriving cells can
be transmitted to the outputs� We will refer to this as perfect output queueing�

Perfect output queueing yields the best performance possible in a switch� because cells are only
delayed due to contention for limited output link bandwidth� never due to contention internal to the
switch� Unfortunately� the hardware cost of perfect output queueing is prohibitive for all but the
smallest switches� the internal interconnect plus the bu�ers at each output must accommodate N
times the link bandwidth� Thus it is more common for switches to be built with some small k chosen
as the replication factor� If more than k cells arrive during a slot for a given output� not all of them
can be forwarded immediately� Typically� the excess cells are simply dropped� While studies have
shown that few cells are dropped with a uniform workload �Giacopelli et al� ���� unfortunately local
area network tra�c is rarely uniform� Instead� a common pattern is client�server communication�
where a large fraction of incoming cells tend to be destined for the same output port� as described
by Owicki and Karlin ������� Unlike previous generation networks� �ber links have very low error
rates� the links we are using in AN�� for example� have a bit error rate of less than ������ Thus�
loss induced by the switch architecture will be more noticeable�

Another technique� often combined with the previous one �Giacopelli et al� ���� is to shunt blocked
cells into a re�circulating queue that feeds back into extra ports in the batcher�banyan network� The
re�circulated cells are then sorted� along with incoming cells� during the next time slot� Once again�
if there is too much contention for outputs� some cells will be dropped�

Our switch takes the alternative approach of using random access input bu�ers� Cells that cannot
be forwarded in a slot are retained at the input� and the �rst cell of any queued �ow can be selected
for transmission across the switch� This avoids the cell loss problem in the schemes above� but
requires a more sophisticated algorithm for scheduling the cells to be transmitted in a slot�

While there have been several proposals for switches that use random access input bu�ers �Karol
et al� �
� Tamir 	 Frazier ��� Obara 	 Yasushi ��� Karol et al� ���� the di�culty is in devising an
algorithm that is both fast enough to schedule cells at high link speeds and e�ective enough to deliver
high link throughput� For example� Hui and Arthurs ����
� use the batcher network to schedule the
batcher�banyan� At �rst� only the header for the �rst queued cell at each input port is sent through
the batcher network� an acknowledgement is returned indicating whether the cell is blocked or can
be forwarded during this time slot� Karol et al� ����
� suggest that iteration can be used to increase
switch throughput� In this approach� an input that loses the �rst round of the competition sends
the header for the second cell in its queue on the second round� and so on� After some number of
iterations k� the winning cells� header plus data� are sent through the batcher�banyan to the outputs�
Note that this reduces the impact of head�of�line blocking but does not eliminate it� since only the
�rst k cells in each queue are eligible for transmission�

�

� Parallel Iterative Matching

In this section� we describe our algorithm for switch scheduling� �rst giving an overview� and then
discussing its execution time and hardware cost� The section concludes with simulations of its
performance relative to FIFO and output queueing�

��� Overview

The goal of our scheduling algorithm is to quickly �nd a con�ict�free pairing of inputs to outputs�
considering only those pairs with a queued cell to transmit between them� This pairing determines
which inputs transmit cells over the crossbar to which outputs in a given time slot� With random
access bu�ers� an input may transmit to any one of the outputs for which it has a queued cell� but
the constraint is that each input can be matched to at most one output and each output to at most
one input�

Our algorithm� parallel iterative matching� uses parallelism� randomness� and iteration to accom�
plish this goal e�ciently� We iterate the following three steps initially� all inputs and outputs are
unmatched��

�� Each unmatched input sends a request to every output for which it has a bu�ered cell� This
noti�es an output of all its potential partners�

�� If an unmatched output receives any requests� it chooses one randomly to grant� The output
noti�es each input whether its request was granted�

�� If an input receives any grants� it chooses one to accept and noti�es that output�

Each of these steps occurs independently and in parallel at each input�output port� there is no
centralized scheduler� Yet at the end of one iteration of the protocol� we have a legal matching
of inputs to outputs� More than one input can request the same output� the grant phase chooses
among them� ensuring that each output is paired with at most one input� More than one output
can grant to the same input if the input made more than one request�� the accept phase chooses
among them� ensuring that each input is paired with at most one output�

While we have a legal matching after one iteration� there may remain unmatched inputs with
queued cells for unmatched outputs� An output whose grant is not accepted may be able to be
paired with an input� none of whose requests were granted� To address this� we repeat the request�
grant� accept protocol� retaining the matches made in previous iterations� We iterate to ��ll in the
gaps� in the match left by previous iterations� However� there can be no head�of�line blocking in
our approach� since we consider all potential connections at each iteration�

Figure � illustrates one iteration of parallel iterative matching� Five requests are made� three
are granted� and two are accepted� Further� at the end of the �rst iteration� one request from the
bottom input to output �� remains from an unmatched input to an unmatched output� This request
is made� granted� and accepted during the second iteration� at this point� no further pairings can be
added�

After a �xed number of iterations discussed below�� we use the result of parallel iterative match�
ing to set up the crossbar for the next time slot� We then transmit cells over the crossbar� and re�run
parallel iterative matching from scratch for the following time slot� Any remaining �ows with queued
cells can be considered for matching� as can any �ows that have had cells arrive at the switch in the
meantime�

Parallel iterative matching may forward cells through the switch in an order di�erent from the
order in which they arrived� However� the switch maintains a FIFO queue for each �ow� so cells
within a �ow are not re�ordered� Only the �rst queued cell in each �ow is eligible to be transmitted

�

� �

� �

request grant accept

�

�
�
���

Q
Q
QQs

Q
Q
QQs

�

Q
Q

QQk

�
�

���

�

�
�
���

�

Figure �� Parallel Iterative Matching� One Iteration

over the crossbar� This use of FIFO queueing does not lead to head�of�line blocking� however� since
all cells from a �ow are routed to the same output� either none of the cells of a �ow are blocked or
all are�

Our algorithm can be generalized to handle switches with replicated switching fabrics� For
instance� consider a batcher�banyan switch with k copies of the banyan network� With such a
switch� up to k cells can be delivered to a single output during one time slot� Note that this
requires bu�ers at the outputs� since only one cell per slot can leave the output�� In this case� we
can modify parallel iterative matching to allow each output to make up to k grants in step �� In all
other ways� the algorithm remains the same� An analogous change can be made for switch fabrics
that allow inputs to forward more than one cell during any time slot� For the remainder of the
paper� however� we assume that each input must be paired with at most one output and vice versa�

��� Number of Iterations

A key performance question is the number of iterations that it takes parallel iterative matching to
complete� that is� to reach a point where no unmatched input has cells queued for any unmatched
output� In the worst case� this can take N iterations for an N by N switch� if all outputs grant to
the same input� only one of the grants can be accepted on each round� If this pattern were repeated�
parallel iterative matching would be no faster than a sequential matching algorithm� On the other
hand� in the best case� each output grants to a distinct input� in which case the algorithm takes only
one iteration to �nish�

To avoid the worst case behavior� we make it unlikely that outputs grant to the same input by
having each output choose among requests using an independent random number� In Appendix A�
we show that by using randomness� the algorithm completes in an average of OlogN � iterations�
this result is independent of the initial pattern of input requests� The key to the proof is that each
iteration resolves� either by matching or by removing from future consideration� an average of at
least ��� of the remaining unresolved requests�

The AN� prototype switch runs parallel iterative matching for four iterations� rather than iter�
ating until no more matches can be added� There is a �xed amount of time to schedule the switch �
the time to receive one cell at link speed� In our current implementation using ���byte ATM cells�
�eld�programmable gate arrays� and ��� gigabit�per�second links� there is slightly more than enough
time for four iterations�

To determine how many iterations it would take in practice for parallel iterative matching to
complete� we simulated the algorithm on a variety of request patterns� Table � shows the results of
these tests for a �� by �� switch� The �rst column lists the probability p that there is a cell queued�
and thus a request� for a given input�output pair� several hundred thousand patterns were generated

�

Prfinput i has a Number of Iterations K�
cell for output jg � � � �

��� �
� ����� ����
���
�� �
��� ����
� ����
��� ��� ��� ����� �����
�
�
� ��� ��� ����� ����
�
��� ��� ��� �
� �����

Table �� Percentage of Total Matches Found Within K Iterations� Uniform Workload

Functional Unit Prototype Cost Production Cost est��
Optoelectronics ��� ���
Crossbar �� ��
Bu�er RAM�Logic ��� ���
Scheduling Logic ��� ��
Routing�Control CPU �
� ���

Table �� AN� Switch Component Costs� as Proportion of Total Switch Cost

for each value of p� The remaining columns show the percentages of matches found within one
through four iterations� where ���� represents the number of matches found by running iterative
matching to completion� Table � shows that additional matches are hardly ever found after four
iterations in a �� by �� switch� we observed similar results for client�server request patterns�

��� Implementation Issues

We next consider issues in implementing parallel iterative matching in hardware�
First� note that the overall cost of implementing parallel iterative matching is small relative to

the rest of the cost of the AN� switch� In addition to switch scheduling hardware� the AN� switch
has optoelectronics for receiving and transmitting cells over the �ber links� a crossbar for forwarding
cells from inputs to outputs� cell bu�ers at each input port along with logic for managing the bu�ers�
and a control processor for managing routing tables and the pre�computed schedule described in the
next section� Table � lists the hardware cost of each of these functional units as a percentage of
the total cost of a �� by �� AN� switch� Table � considers only the cost of the hardware devices
needed by each functional unit� not the engineering cost of designing the switch logic� We list both
the actual costs for our prototype switch and our estimate of the costs for a production version of
the switch� To simplify the design process� we implemented most of the logic in the AN� prototype
with Xilinx �eld�programmable gate arrays �Xil ���� A production system would use a more cost�
e�ective technology� such as custom CMOS� reducing cost of the random logic needed to implement
parallel iterative matching relative to the rest of the cost of the switch� In either the prototype or
the production version� the cost of the optoelectronics dominates the cost of the switch�

Parallel iterative matching requires random access input bu�ers� so that any input�output pair
with a queued cell can be matched during the next time slot� We implement this by organizing the
input bu�ers into lists� Each �ow has its own FIFO queue of bu�ered cells� A �ow is eligible for
scheduling if it has at least one cell queued� A list of eligible �ows is kept for each input�output
pair� If there is at least one eligible �ow for a given input�output pair� the input requests the output
during parallel iterative matching� If the request is granted� one of the eligible �ows is chosen for
scheduling in round�robin fashion� When a cell arrives� it is put on the queue for its �ow� and its
�ow is added to the list of eligible �ows if it is not already there� When a cell departs the switch� its
�ow may need to be removed from the list of eligible �ows� Our implementation stores the queue

�

data structures in SRAM and overlaps the queue manipulation with reading and writing the cell
data to the bu�er RAM� Note that the mechanism for managing random access input bu�ers is also
needed for providing guaranteed performance to �ows as described in the next section�

We implement the request� grant� accept protocol by running a wire between every input and
output� Even though this requires hardware that grows as ON�� for an N by N switch� this is not
a signi�cant portion of the switch cost� at least for moderate scale switches� The request and grant
signals can be encoded by a single bit on the appropriate wire� As a simple optimization� no separate
communication is required in step � to indicate which grants are accepted� Instead� when an input
accepts an output�s grant� it simply continues to request that output on subsequent iterations� but
drops all other requests� Once an output grants to an input� it continues to grant to the same input
on subsequent iterations unless the input drops its request�

The thorniest hardware implementation problem is randomly selecting one among k requesting
inputs� The obvious way to do this is to generate a pseudo�random number between � and k� but
we are examining ways of doing more e�cient random selection� For instance� for moderate�scale
switches� the selection can be e�ciently implemented using tables of precomputed values� Our
simulations indicate that the number of iterations needed by parallel iterative matching is relatively
insensitive to the technique used to approximate randomness�

��� Maximal vs� Maximum Matching

It is reasonable to consider whether a switch scheduling algorithm more sophisticated than parallel
iterative matching might achieve better switch throughput� although perhaps with higher hardware
cost� Scheduling a switch with random access input bu�ers is an application of bipartite graph
matching �Tarjan ���� Switch inputs and outputs form the nodes of a bipartite graph� the edges are
the connections needed by queued cells�

Bipartite graph matching has been studied extensively� There are two interesting kinds of bi�
partite matches� A maximum match is one that pairs the maximum number of inputs and outputs
together� there is no other pairing that matches more inputs and outputs� A maximal match is
one for which pairings cannot be trivially added� each node is either matched or has no edge to an
unmatched node� A maximum match must of course be maximal� but the reverse is not true� it may
be possible to improve a maximal match by deleting some pairings and adding others�

We designed parallel iterative matching to �nd a maximal match� even though link utilization
would be better with a maximum match� One reason was the length of time we had to make a
scheduling decision� we saw no way using current technology to do maximum matching under the
time constraint imposed by ���byte ATM cells and gigabit�per�second links� Finding a maximum
match for an N by N graph with M edges can take ON � N � M �� time� Although Karp et al�
������ give a randomized algorithm that comes close on average to �nding a maximum match� even
that algorithm can take ON �M � time� As discussed above� our parallel algorithm �nds a maximal
match in logarithmic time� on average�

Another disadvantage of maximum matching is that it can lead to starvation� The example we
used to explain parallel iterative matching Figure �� also illustrates this possibility� Assuming a
su�cient supply of incoming cells� maximum matching would never connect input � with output
�� In contrast� parallel iterative matching does not incur starvation� Since every output grants
randomly among requests� an input will eventually receive a grant from every output it requests�
Provided inputs choose among grants in a round�robin or other fair fashion� every queued cell will
eventually be transmitted�

In the worst case� the number of pairings in a maximal match can be as small as ��� of the
number of pairings in a maximum match� However� the simulations reported below indicate that
even if it were possible to do maximum matching or some even more sophisticated algorithm� in
one ATM cell time slot at gigabit link speeds� there could be only a marginal bene�t� since parallel

��

1.00.90.80.70.60.50.40.30.20.10.0
0

5

10

15

20

25

Simulated Performance of Switch Scheduling Algorithms:
 Uniform Workload

Offered Load

Q
u

eu
ei

n
g

 D
el

ay
 (

ce
lls

)

 FIFO
Queueing

Iterative
Matching

 Output
Queueing

Figure �� Simulated Performance of Switch Scheduling Algorithms� Uniform Workload

iterative matching comes close to the optimal switch performance of perfect output queueing�

��� Performance of Iterative Matching

To evaluate the performance of parallel iterative matching� we compared it to FIFO queueing and
perfect output queueing by simulating each under a variety of workloads on a �� by �� switch� All
simulations were run for long enough to eliminate the e�ect of any initial transient� As noted in
Section �� FIFO queueing is simple to implement� but can have performance problems� Perfect
output queueing is infeasible to implement even for a moderate scale gigabit switch� but indicates
the optimal switch performance given unlimited hardware resources�

Figure � shows average queueing delay in cell time slots� vs� o�ered load for the three scheduling
algorithms� FIFO queueing� parallel iterative matching� and perfect output queueing� O�ered load
is the probability that a cell arrives departs� on a given link in a given time slot� The destinations
of arriving cells are uniformly distributed among the outputs�

Figure � illustrates several points�

� At low loads� there is little di�erence in performance between the three algorithms� When

��

1.00.90.80.70.60.50.40.30.20.10.0
0

5

10

15

20

25

Simulated Performance of Switch Scheduling Algorithms:
 Client-Server Workload

Offered Load (at Server Ports)

Q
u

eu
ei

n
g

 D
el

ay
 (

ce
lls

)

 FIFO
Queueing

Iterative
Matching

 Output
Queueing

Figure �� Simulated Performance of Switch Scheduling Algorithms� Client�Server Workload

there are few queued cells� it does not matter beyond hardware implementation cost� which
switch scheduling algorithm is used�

� At moderately high loads� neither parallel iterative matching nor output queueing is limited� as
FIFO queueing is� by head�of�line blocking� Parallel iterative matching does have signi�cantly
higher queueing delay than perfect output queuing� This is because� with output queueing� a
queued cell is delayed only by other cells at the same output� With parallel iterative matching�
a queued cell must compete for the crossbar with both cells queued at the same input and cells
destined for the same output�

� The peak switch throughput of parallel iterative matching comes quite close to that of perfect
output queueing� Even at very high loads� the queueing delay for parallel iterative matching
is quite reasonable� For instance� our switch� with ���byte ATM cells and gigabit�per�second
links� will forward an arriving cell in an average of less than �� �sec� when the links are being
used at ��� of capacity�

Figure �� shows average queueing delay vs� o�ered load under a non�uniform client�server work�
load� In de�ning the workload� four of the sixteen ports were assumed to connect to servers� the

��

1.00.90.80.70.60.50.40.30.20.10.0
0

5

10

15

20

25

Simulated Performance of Parallel Iterative Matching:
 Number of Iterations

Offered Load

Q
u

eu
ei

n
g

 D
el

ay
 (

ce
lls

)

One Iteration

Two Iterations

Three Iterations

Four Iterations
Infinite Iterations

Figure �� Simulated Performance of Parallel Iterative Matching� Uniform Workload

remainder to clients� Destinations for arriving cells were randomly chosen in such a way that client�
client connections carried only �� of the tra�c of client�server or server�server connections� Here
o�ered load refers to the load on a server link�

The results in Figure � are qualitatively similar to those of Figure �� FIFO queueing still su�ers
from head�of�line blocking� limiting its maximum possible throughput� Parallel iterative matching
performs well on this workload� coming even closer to optimal than in the uniform case� The results
were similar for other client�server tra�c ratios and for di�erent numbers of servers�

Finally� Figure � shows the impact of the number of iterations on the performance of parallel
iterative matching� Here the number of iterations was varied� using the uniform workload of Figure ��
The result con�rms that for a �� by �� switch� there is no signi�cant bene�t to running parallel
iterative matching for more than four iterations� the queueing delay with four iterations is everywhere
within ���� of the delay assuming parallel iterative matching is run to completion� Note that even
with one iteration� parallel iterative matching does better than FIFO queueing�

To summarize� parallel iterative matching makes it possible for the switch to achieve a nearly
ideal match in a short time� Moreover� the hardware requirements are modest enough to make
parallel iterative matching practical for high speed switching�

��

� Real�Time Performance Guarantees

As network and processor speeds increase� new types of high performance distributed applications
become feasible� Supporting the demands of these applications requires more from a network than
just high throughput or low latency� Parallel iterative matching� while fast and e�ective at keeping
links utilized� cannot by itself provide all of the needed services� The remainder of this paper
discusses these issues and suggests ways of augmenting the basic algorithm to address them�

One important class of applications are those that depend on real�time performance guarantees�
For example� multimedia applications must display video frames at �xed intervals� They require
that the network provide a certain minimum bandwidth and a bounded latency for cell delivery�
Following the conventions of the ATM community� we will refer to tra�c with reserved bandwidth
requirements as constant bit rate �CBR�� and refer to other tra�c as variable bit rate �VBR�� VBR
tra�c is often called datagram tra�c� Switches distinguish VBR and CBR cells based on the �ow
identi�er in the cell header��

To ensure guaranteed performance� an application issues a request to the network to reserve a
certain bandwidth and latency bound for a CBR �ow �Ferrari 	 Verma ���� If the request can
be met without violating any existing guarantees� the network grants it and reserves the required
resources on a �xed path between source and destination� The application can then transmit cells at
a rate up to its requested bandwidth� and the network ensures that they are delivered on time� By
contrast� applications can transmit VBR cells with no prior arrangement� If the network becomes
heavily loaded� VBR cells may su�er arbitrary delays� But CBR performance guarantees are met
no matter how high the load of VBR tra�c�

With CBR tra�c� since we know the o�ered load in advance� we can a�ord to spend time to pre�
compute a schedule at each switch to accommodate the reservations� By contrast� parallel iterative
matching was devised to rapidly schedule the switch in response to whatever VBR tra�c arrives at
the switch�

Our contribution is showing how to implement performance guarantees in a network of input�
bu�ered switches with unsynchronized clocks� The rest of this section describes our approach to
CBR tra�c� We �rst describe the form of a bandwidth request and the criterion used to determine
whether it can be accepted� We next show how a switch can be scheduled to meet bandwidth
guarantees� Finally� we show that bu�ers for CBR tra�c can be statically allocated and the latency
of CBR cells can be bounded� even when network switch clock rates are unsynchronized� Our
approach smoothly integrates both CBR and VBR tra�c� VBR cells can consume all of the network
bandwidth unused by CBR cells�

Bandwidth allocations are made on the basis of frames which consist of a �xed number of slots�
where a slot is the time required to transmit one cell �Golestani ���� An application�s bandwidth
request is expressed as a certain number of cells per frame� if the request is granted� each switch
in the path schedules the �ow into that number of frame slots� and repeats the frame schedule to
deliver the promised throughput� Frame boundaries are internal to the switch� they are not encoded
on the link�

Frame size is a parameter of the network� A larger frame size allows for �ner granularity in
bandwidth allocation� we will see later that smaller frames yield lower latency� The frame size in
our prototype switch is ���� slots� a frame takes less than half a millisecond to transmit� This leads
to latency bounds that seem acceptable for multimedia applications� the most likely use for CBR
guarantees�

When a request is issued� network management software must determine whether it can be
granted� In our approach� this is possible if there is a path from source to destination on which each

�Of course� some real�time applications need performance guarantees for tra	c whose bandwidth varies over time�
In this section� we consider only CBR guarantees amid datagram tra	c� in the next section� we discuss a switch
scheduling algorithm that may better accommodate real�time
ows with variable bandwidth requirements�

��

Reservations cells per frame�

Output
Input � � � �

� � � �
� �
� � �
� � �

Schedule

Slot � � � � � � � � � �
Slot � � � � � � � � � � � � �
Slot � � � � � � � � � �

Figure �� CBR Tra�c� Reservations and Schedule

link�s uncommitted capacity can accommodate the requested bandwidth� If network software �nds
such a path� it grants the request� and noti�es the involved switches of the additional reservation�
The application can then send up to the reserved number of cells each frame� The host controller
or the �rst switch on the �ow�s path can meter the rate at which cells enter the network� if the
application exceeds its reservation� the excess cells may be dropped� Alternatively� excess cells may
be allowed into the network� and any switch may drop cells for a �ow that exceeds its allocation of
bu�ers�

Note that this allocation criterion allows ���� of the link bandwidth to be reserved although
we shall see later that a small amount of bandwidth is lost in dealing with clock drift�� Meeting this
throughput level is straightforward with perfect output queueing �Golestani ��� Kalmanek et al� ����
but this assumes the switch has enough internal bandwidth that it never needs to drop cells under
any pattern of arriving CBR cells� With input bu�ering� parallel iterative matching is not capable
of guaranteeing this throughput level�

Instead� in AN�� CBR tra�c is handled by having each switch build an explicit schedule of
input�output pairings for each slot in a frame� the frame schedule is constructed to accommodate
the guaranteed tra�c through the switch� The Slepian�Duguid theorem �Hui ��� implies that such a
schedule can be found for any tra�c pattern� so long as the number of cells per frame from any input
or to any output is no more than the number of slots in a frame� in other words� so long as the link
bandwidth is not over�committed� When a new reservation is made� it may be necessary to rearrange
the connections in the schedule� We are free to rearrange the schedule� since our guarantees depend
only on delivering the reserved number of cells per frame for each �ow� not on which slot in the
frame is assigned to each �ow� The slot assignment can be changed dynamically without disrupting
guaranteed performance�

An algorithm for computing the frame schedule is as follows �Hui ���� Suppose a reservation is
to be added for k cells per frame from input P to output Q� P and Q have k free slots per frame�
or else the reservation cannot be accommodated� We add the reservation to the schedule one cell at
a time� First� if there is a slot in the schedule where both P and Q are unreserved� the connection
can be added to that slot� Otherwise� we must �nd a slot where P is unreserved� and a di�erent slot
where Q is unreserved� These slots must exist if P and Q are not over�committed� The algorithm
swaps pairings between these two slots� starting by adding the connection from P to Q to either of
the two slots� This will cause a con�ict with an existing connection for instance� from R to Q�� this
connection is removed and added to the other slot� In turn� this can cause a con�ict with an existing
connection from R to S�� which is removed and added to the �rst slot� The process is repeated
until no con�ict remains� It can be shown that this algorithm always terminates�

Figure � provides an example of reservations and a schedule for a frame size of � slots� Figure

illustrates the modi�cation to the schedule needed to accommodate an additional reservation of one
cell per frame from input � to output �� Because there is no slot in which both input � and output
� are free� the existing schedule must be shu�ed in order to accommodate the new �ow� In the
example� we added the connection to slot �� and swapped several connections between slots � and ��

��

Reservations cells per frame�

Output
Input � � � �

� � � �
� � �
� � �
� � �

Schedule

Slot � � � � � � � � � �
Slot � � � � � � � � � � � � �
Slot � � � � � � � � � � � � �

Figure
� CBR Tra�c with Added Reservation

Computing a new schedule may require a number of steps proportional to the size of the reser�
vation in cells�frame� � N � for an N by N switch� However� the test for whether a switch can
accommodate a new �ow is much simpler� it is possible so long as the input and output link each
have adequate unreserved capacity� Once a feasible path is found� the selected switches can compute
their new schedules in parallel�

CBR cells are routed across the switch during scheduled slots� VBR cells are transmitted during
slots not used by CBR cells� For example� in Figure �� a VBR cell can be routed from input � to
output � during the third slot� In addition� VBR cells can use an allocated slot if no cell from the
scheduled �ow is present at the switch�

Pre�scheduling the switch ensures that there is adequate bandwidth at each switch and link for
CBR tra�c� It is also necessary to have enough bu�er space at each switch to hold cells until they
can be transmitted� otherwise� some cells would be lost� The AN� switch statically allocates enough
bu�er space for CBR tra�c� VBR cells use a di�erent set of bu�ers� which are subject to �ow
control�

In a network where switch clock rates are synchronized� as in the telephone network� a switch
needs enough bu�er space at each input link for two frames worth of cells �Golestani ��� Zhang 	
Keshav ���� Note that one frame of bu�ering is not enough� because the frame boundaries may
not be the same at both switches� and because the switches can rearrange their schedules from one
frame to the next�

The situation becomes more complicated when each switch or controller�s clock can run at a
slightly di�erent rate� The time to transmit a frame of cells is determined by the local clock rate at
the switch or controller� Thus� an upstream switch or controller with a fast clock rate can overrun
the bu�er space for a slow downstream switch� by sending cells at a faster rate than the downstream
switch can forward cells� More deviously� a switch may run more slowly for a time� building up a
backlog of cells� then run faster� dumping the backlog onto the downstream switch�

Our solution assumes the clock rates on all switches and controllers are within some tolerance
of the same rate� We then constrain the network controllers to insert cells at a slower rate than
that of the slowest possible downstream switch� We do this by adding extra empty slots to the
end of each controller but not switch� frame� so that even if the controller has a fast clock and a
switch has a slow clock� the controller�s frame will still take longer than the switch�s frame� Because
the rate at which controllers insert cells is constrained� a fast switch can only temporarily overrun a
slower downstream switch� we need to allocate enough bu�er space to accommodate these temporary
bursts� Over the long run� cells can arrive at a switch only at the rate at which they are inserted by
the network controller�

We derive the exact bound on the bu�er space required in Appendix B as a function of network
parameters� the switch and controller frame sizes� the network diameter� and the clock error limits�
Four or �ve frames of bu�ers are su�cient for values of these parameters that are reasonable for
local area networks�

Now let us consider latency guarantees� If switch clocks are synchronized� a cell can be delayed

��

at most two frame times at each switch on its path �Golestani ��� Zhang 	 Keshav ���� Let p
be the number of hops in the cell�s path� f the time to transmit a frame� and l an upper bound
on link latency plus switch overhead for processing a cell� Then the total latency for a cell is less
than p�f � l�� When switches are not synchronized� the delay experienced by a cell at a particular
switch may be larger than �f � l�� but the end�to�end delay is still bounded by p�f � l�� Again�
the derivation is presented in Appendix B� This yields latency bounds in AN� that are adequate
for most multimedia applications� A smaller frame size would provide lower CBR latency� but as
already mentioned it would entail a larger granularity in bandwidth reservations� We are considering
schemes in which a large frame is subdivided into smaller frames� This would allow each application
to trade o� a guarantee of lower latency against a smaller granularity of allocation�

To summarize� bandwidth and latency guarantees are provided through the following mecha�
nisms�

� Applications request bandwidth reservations in terms of slots�frame�

� The network grants a request if it can �nd a path on which each link has the required capacity�

� Each switch� when noti�ed of a new reservation� builds a schedule for transmitting cells across
the switch�

� Enough bu�ers are permanently reserved for CBR tra�c to ensure that arriving cells will
always �nd an empty bu�er�

� Latency is bounded by a simple function of link latency� path length� and frame size�

� Statistical Matching

The AN� switch combines the methods described in the previous two sections to provide low latency
and high throughput for VBR tra�c and guaranteed performance for CBR tra�c� In this section� we
present a generalization of parallel iterative matching� called statistical matching� that can e�ciently
support frequent changes of bandwidth allocation� In contrast� the Slepian�Duguid technique for
bandwidth allocation works well so long as allocations are not changed too frequently� since changes
require computing a new schedule at each switch� One motivation for dynamic bandwidth allocation
is to provide fair sharing of network resources among competing �ows of VBR tra�c� Another is to
support applications that require guaranteed performance and have bandwidth requirements that
vary over time� as can be the case with compressed video�

Statistical matching works by systematically using randomness in choosing which request to grant
and which grant to accept� We might say that parallel iterative matching uses fair dice in making
random decisions� with statistical matching� the dice are weighted to divide bandwidth between
competing �ows according to their allocations� About
�� of the bandwidth can be reserved using
our scheme� the remaining bandwidth can be �lled in by normal parallel iterative matching� The
�rst implementation of the AN� switch does not implement statistical matching�

In this section� we �rst motivate statistical matching by brie�y discussing network fairness� then
we describe the statistical matching algorithm�

��� Motivation

Ramakrishnan et al� ������ provide a formal de�nition of fairness in the allocation of network re�
sources� To be fair� every user should receive an equal share of every network resource that does
not have enough capacity to satisfy all user requests� If a user needs less than its equal share� the
remainder should be split among the other users� One result of a fair network� then� is that users

�

��� � � � �

����

����

����

�
�
�
�
�
�
�
��

�
�
�
�
���

�
�
���

�

�
�
�
�
���

�
�
���
�

Figure �� Unfairness with Parallel Iterative Matching

d d d d

c c c c

b b b b a a a a

c d c d b c b d a b a c a b a d

Figure �� Unfairness with Arbitrary Topology Networks

typically see graceful degradation in performance under increased load� Adding an additional user
to an already crowded system will result in a relatively small decrease in everyone else�s resource
allocation�

Unfortunately� an arbitrary topology network built out of switches using parallel iterative match�
ing may not be fair� for two reasons� First� to be scheduled� a queued cell needs to receive a grant
from its output and to have its input accept the grant� Both the input and output ports are sources
of contention� parallel iterative matching will tend to give higher throughput to input�output connec�
tions that have fewer contending connections� In Figure �� for instance� if input � chooses randomly
which grant to accept� the connection from input � to output � will receive only one sixteenth of the
link throughput� all other connections receive �ve times this bandwidth�

Second� even if switches allocate output bandwidth equally among all requesting input ports�
arbitrary topology networks using these switches may not share bandwidth fairly among users or
�ows �Demers et al� ����� Depending on the workload and the topology of the network� each switch
input may have a di�erent number of �ows� A �ow reaching a bottleneck link at the end of a long
chain of switches may receive an arbitrarily small portion of the link throughput� while another �ow
merging closer to the bottleneck receives a much larger portion� Unfortunately� this pattern is quite
likely when one host is a highly�used server� Figure � illustrates what happens when four �ows share
a bottleneck link� Each letter represents a cell� switches are assumed to select input ports round
robin� In a fair allocation� each �ow would receive the same throughput on the rightmost link� but
�ows c� and d� receive much less throughput than does �ow a��

A number of approaches to fairness in arbitrary topology networks have been proposed� One class
of techniques involves using some measure of network load to determine a fair allocation of bandwidth
among competing �ows� Once such an allocation has been determined� the problem remains of
dividing network resources according to the allocation� For example� Zhang ������ suggests a virtual

�A �network user� may� of course� be sendingmore than one
ow of cells through a switch� for example� to dierent
hosts� For simplicity� though� the remainder of our discussion will assume that our target is fairness among
ows as
an approximation to fairness among users�

��

clock algorithm� Host network software assigns each �ow a share of the network bandwidth and
noti�es each switch along the �ow�s path of the rate to be delivered to the �ow� When a cell arrives
at a switch� it is assigned a timestamp based on when it would be scheduled if the network were
operating fairly� the switch gives priority to cells with earlier timestamps�

The virtual clock algorithm requires that each output link can select arbitrarily among any of the
cells queued for it� This is the case in a switch with perfect output queueing� In our input�bu�ered
switch� however� only one cell from each input can be forwarded at a time� Section � gave one
way of supporting bandwidth allocation in an input�bu�ered switch� Statistical matching is another
approach� one which is more suited to the rapid changes in allocation needed to provide fairness�

��� Algorithm

Statistical matching� like using a pre�computed frame schedule� delivers to each �ow a speci�ed
portion of the link throughput� With statistical matching� up to � � �

e
�� � �

e�
�� or
��� of each

link�s throughput can be reserved� the throughput allocation can be in any pattern� provided the sum
of the throughputs at any input or output is less than
��� Any slot not used by statistical matching
can be �lled with other tra�c by parallel iterative matching� However� adjusting throughput rates is
more e�cient with statistical matching than with a pre�computed schedule� because only the input
and output ports used by a �ow need be informed of a change in its rate�

Statistical matching is based on parallel iterative matching� but it makes more systematic use
of randomness in making and accepting grants� The pairing of inputs to outputs is chosen indepen�
dently for each time slot� but on average� each �ow is scheduled according to its speci�ed throughput
rate� The algorithm mirrors parallel iterative matching except that there is no request phase�

We divide the allocatable bandwidth per link into X discrete units� Xi�j denotes the number of
units allocated to tra�c from input i to output j� The key is that we arrange the random weighting
factors at the inputs and outputs so that each input receives up to X virtual grants� each made
independently with probability �

X
� Xi�j of the potential virtual grants to input i are associated with

output j� If input i then chooses randomly among the virtual grants it receives� it will connect to
each output with probability proportional to its reservation�

We outline the steps of the algorithm here� using the simplifying assumption that switch band�
width is completely allocated� Appendix C presents a precise de�nition of the algorithm without
this assumption� and shows that it delivers up to
�� of the link throughput�

�� Each output randomly chooses one input to grant� output j chooses input i with probability
Xi�j

X
proportional to the bandwidth reservation�

�� If an input receives any grants� it chooses at most one grant to accept it may accept none� in
a two�step process�

a� The input reinterprets the grant as zero or more virtual grants� so that the resulting
probability that input i receives k virtual grants from output j is just the binomial
distribution � the likelihood that exactly k of X independent events occur� given that
each occurs with probability �

X
�

b� If an input receives any virtual grants� it chooses one randomly to accept� the output
corresponding to the accepted virtual grant is then matched to the input�

Since each virtual grant is made with probability �

X
� the likelihood that an input receives no

virtual grants and thus is not matched� by the above algorithm is X��
X

�X � As X grows large� this
approaches �

e
from below� Since each virtual grant is equally likely to be accepted� the probability

of a connection between an input i and an output j is
Xi�j

X
�� �

e
�� or about ��� of Xi�j

X
�

��

Better throughput can be achieved by running a second iteration of statistical matching� The
grant�accept steps are carried out independently of the results of the �rst iteration� but a match
made by the second iteration is added only if both the input and output were left unmatched by the
�rst iteration� Con�icting matches are discarded� We show in Appendix C that a match is added
by the second iteration with probability for large X� �

e�
�� �

e
�Xi�j

X
� yielding the ability to reserve a

total
�� of the link bandwidth� Additional iterations yield insigni�cant throughput improvements�
Statistical matching requires more hardware to implement than does parallel iterative matching�

although the cost is not prohibitive� Steps � and �a can both be implemented as table lookups� The
table is initialized with the number of entries for each outcome proportional to its probability� a
random index into the table selects the outcome� Step �b is a generalization of the random choice
among requests needed by parallel iterative matching� similar implementation techniques apply�

��� Discussion

We motivated statistical matching by suggesting that it could be used to schedule the switch fairly
among competing �ows� Statistical matching appears to meet many of the goals that motivated
Zhang�s virtual clock approach� With either approach� the switch can be set to assign equal through�
put to every competing �ow through a bottleneck link� Statistical matching can provide roughly
equal throughput without the need for tagging individual cells with timestamps and prioritizing
�ows based on those timestamps� although some unfairness may be added when parallel iterative
matching �lls in gaps left by statistical matching� With statistical matching� as with the virtual
clock approach� a �ow can temporarily send cells faster or slower than its speci�ed rate� provided
the throughput is not exceeded over the long term� Queues in the network increase if the �ow sends
at a faster rate� queues empty as the �ow sends at a slower rate� The virtual clock approach also
provides a way of monitoring whether a �ow is exceeding its speci�ed rate over the long term� there
is no analogue with statistical matching�

� Summary

We have described the design of the AN� switch� which can support high performance distributed
computing� Key to the switch�s operation is a technique called parallel iterative matching� a fast
algorithm for choosing a con�ict�free set of cells to forward across the switch during each time
slot� Our prototype switch combines this with a mechanism to support real�time tra�c even in the
presence of clock drift� The switch will be used as the basic component of an arbitrary topology
point�to�point local area network� providing

�� high bandwidth�

�� low latency for datagram tra�c� so long as the network is not overloaded� and

�� bandwidth and latency guarantees for real�time tra�c�

In addition� the switch�s scheduling algorithm can be extended to allocate resources fairly when
some part of the network is overloaded�

We believe that the availability of high performance networks with these characteristics will
enable a new class of distributed applications� Networks are no longer slow� serial� highly error�prone
bottlenecks where message tra�c must be carefully minimized in order to get good performance�
This enables distributed systems to be more closely coupled than has been possible in the past�

��

� Acknowledgements

We would like to thank Mike Burrows� Hans Eberle� Mike Goguen� Domenico Ferrari� Butler Lamp�
son� Tony Lauck� Hal Murray� Roger Needham� John Ousterhout� Tom Rodehe�er� Ed Satterthwaite�
and Mike Schroeder for their helpful comments�

References

�Ahmadi 	 Denzel ��� Ahmadi� H� and Denzel� W� A Survey of Modern High�Performance Switch�
ing Techniques� IEEE Journal on Selected Areas in Communications�

������������ September
�����

�Ame �
� American National Standards Institute� Inc� Fiber distributed data interface �FDDI��
Token ring media access control �MAC�� ANSI Standard X������ ���
�

�Ame ��� American National Standards Institute� Inc� Fiber distributed data interface �FDDI��
Token ring physical layer protocol �PHY�� ANSI Standard X����	� �����

�Batcher ��� Batcher� K� Sorting Networks and their Applications� In AFIPS Conference Proc��
pages ��
����� �����

�Demers et al� ��� Demers� A�� Keshav� S�� and Shenker� S� Analysis and Simulation of a Fair Queue�
ing Algorithm� In Proc� ACM SIGCOMM
	� Conference on Communications Architectures and
Protocols� pages ����� September �����

�Ferrari 	 Verma ��� Ferrari� D� and Verma� D� A Scheme for Real�Time Channel Establishment in
Wide�Area Networks� IEEE Journal on Selected Areas in Communications� ���������
�� April
�����

�Giacopelli et al� ��� Giacopelli� J�� Hickey� J�� Marcus� W�� Sincoskie� W�� and Littlewood� M� Sun�
shine� A High�Performance Self�Routing Broadband Packet Switch Architecture� IEEE Journal
on Selected Areas in Communications� �������������� October �����

�Golestani ��� Golestani� S� Congestion�Free Transmission of Real�Time Tra�c in Packet Networks�
In Proc� INFOCOM
��� pages ��
����� June �����

�Huang 	 Knauer ��� Huang� A� and Knauer� S� Starlite� A Wideband Digital Switch� In Proc�
GLOBECOM
	�� pages �������� December �����

�Hui 	 Arthurs �
� Hui� J� and Arthurs� E� A Broadband Packet Switch for Integrated Transport�
IEEE Journal on Selected Areas in Communications� �����������
�� October ���
�

�Hui ��� Hui� J� Switching and Tra�c Theory for Integrated Broadband Networks� Kluwer Academic
Press� �����

�Jain ��� Jain� R� Congestion Control in Computer Networks� Issues and Trends� IEEE Network
Magazine� pages ������ May �����

�Kalmanek et al� ��� Kalmanek� C�� Kanakia� H�� and Keshav� S� Rate Controlled Servers for Very
High�Speed Networks� In Proc� IEEE Global Telecommunications Conference� pages ��������
�������� December �����

�Karol et al� �
� Karol� M�� Hluchyj� M�� and Morgan� S� Input Versus Output Queueing on a Space�
Division Packet Switch� IEEE Transactions on Communications� ���������
������ December
���
�

�Karol et al� ��� Karol� M�� Eng� K�� and Obara� H� Improving the Performance of Input�Queued
ATM Packet Switches� In Proc� INFOCOM
�� pages �������� May �����

��

�Karp et al� ��� Karp� R�� Vazirani� U�� and Vazirani� V� An Optimal Algorithm for On�line Bipartite
Matching� In Proc� nd Annual ACM Symposium on Theory of Computing� pages �������� May
�����

�Kermani 	 Kleinrock
�� Kermani� P� and Kleinrock� L� Virtual Cut�through� A New Computer
Communication Switching Technique � Computer Networks� ����
����� September ��
��

�Li ��� Li� S��Y� Theory of Periodic Contention and Its Application to Packet Switching� In Proc�
INFOCOM
		� pages �������� March �����

�Metcalfe 	 Boggs
�� Metcalfe� R� and Boggs� D� Ethernet� Distributed Packet Switching for Local
Computer Networks� Communications of the ACM� ��
���������� July ��
��

�Obara 	 Yasushi ��� Obara� H� and Yasushi� T� An E�cient Contention Resolution Algorithm
for Input Queueing ATM Cross�Connect Switches� International Journal of Digital and Analog
Cabled Systems� ����������
� October �����

�Owicki 	 Karlin ��� Owicki� S� and Karlin� A� Factors in the Performance of the AN� Computer
Network� In Proc� ��� ACM SIGMETRICS and PERFORMANCE
� Conference on Mea�
surement and Modeling of Computer Systems� pages ��
����� June �����

�Patel
�� Patel� J� Processor�Memory Interconnections for Multiprocessors� In Proc� �th Annual
Symposium on Computer Architecture� pages �����

� April ��
��

�Ramakrishnan 	 Jain ��� Ramakrishnan� K� and Jain� R� A Binary Feedback Scheme for Conges�
tion Avoidance in Computer Networks� ACM Transactions on Computer Systems� ������������
May �����

�Schroeder 	 Burrows ��� Schroeder� M� and Burrows� M� Performance of Fire�y RPC� ACM
Transactions on Computer Systems� �������
� February �����

�Schroeder et al� ��� Schroeder� M�� Birrell� A�� Burrows� M�� Murray� H�� Needham� R�� Rode�
he�er� T�� Satterthwaite� E�� and Thacker� C� Autonet� A High�Speed Self�Con�guring Local
Area Network Using Point�to�Point Links� IEEE Journal on Selected Areas in Communications�
�������������� October �����

�Tamir 	 Frazier ��� Tamir� Y� and Frazier� G� High�Performance Multi�Queue Bu�ers for VLSI
Communication Switches� In Proc� ��th Annual Symposium on Computer Architecture� pages
�������� June �����

�Tarjan ��� Tarjan� R� Data Structures and Network Algorithms� SIAM� �����

�Xil ��� Xilinx� Inc� Xilinx� The Programmable Gate Array Data Book� �����

�Yeh et al� �
� Yeh� Y�� Hluchyj� M�� and Acampora� A� The Knockout Switch� A Simple Modular
Architecture for High�Performance Switching� IEEE Journal on Selected Areas in Communica�
tions� ������
������� October ���
�

�Zhang 	 Keshav ��� Zhang� H� and Keshav� S� Comparison of Rate�Based Service Disciplines� In
Proc� ACM SIGCOMM
�� Conference on Communications Architectures and Protocols� pages
�������� September �����

�Zhang ��� Zhang� L� Virtual Clock� A New Tra�c Control Algorithm for Packet Switching Net�
works� ACM Transactions on Computer Systems� ������������ May �����

A Number of Iterations For Parallel Iterative Matching

In this appendix� we show that the parallel iterative matching algorithm described in Section �
reaches a maximal match in an average of OlogN � iterations for an N by N switch� This bound

��

is independent of the pattern of requests� The key to the proof is to observe that if an unmatched
output receives a request� one iteration of parallel iterative matching will usually either i� match
the output to one of its requesting inputs or ii� match most of the inputs requesting that output
to other outputs� The result is that each iteration reduces the number of unresolved requests by
an average of at least ���� A request is unresolved if both its input and its output port remain
unmatched�

Consider the requests to each output separately� Suppose an output Q receives requests from n
inputs during some iteration� Of these n inputs� some fraction will request and receive a grant from
some output besides Q� and the rest will receive no grants from other outputs� Let k be the number
of inputs requesting Q that receive no other grants�

Q randomly chooses one of its n requests to grant� Since Q chooses among the requesting inputs
with equal probability� and since Q�s choice is independent of the choices made by other outputs�
the probability that Q will grant to an input that has a no competing grant from another output
is k�n� In this case� Q�s grant will be accepted� and as a result� all of the n requests to Q will be
resolved � one will be accepted� while the rest will never be accepted�

On the other hand� with probability �� k�n�� Q will grant to an input that also receives a grant
from some other output� If the input picks Q�s grant to accept� all of the requests to Q will be
resolved� But even if Q�s grant is not accepted� all of the n� k inputs that received a grant will be
matched to some other output� during this iteration� none of their n� k requests to Q will remain
on the next iteration�

Thus� with probability k�n all requests to Q are resolved� and with probability � � k�n� at
most k remain unresolved� As a result� the average number of unresolved requests to Q is at most
� � k�n�� � k� which is no greater than n�� for any k� Since we start with at most N� requests�
this implies that the expected number of unresolved requests after i iterations is at most N���i�

It remains to be shown that the algorithm reaches a maximal match in an average of OlogN �
steps� Let C be the step on which the last request is resolved� Then the expected value of C is�

E�C� !
�X
i��

i PrfC ! ig

Re�writing the sum yields�

E�C� !
�X
i��

PrfC � ig ��

The likelihood that C � i is just the likelihood that at least one match remains unresolved at
the end of i iterations�

PrfC � ig !
�X
j��

Prfj requests remain after i iterationsg

Replacing the sum by an obviously larger one�

PrfC � ig �
�X
j��

j Prfj requests remain after i iterationsg �
N�

�i

Here the �nal inequality comes from the previously derived bound on the average number of unre�
solved matches after i iterations�

Since a probability can never be greater than �� PrfC � ig � min�� N���i�� Substituting into
Formula � yields�

E�C� �
�X
i��

min��
N�

�i
�

��

Symbol De�nition
Fs�min� Fs�max minimum� maximum time for a switch frame
Fc�min� Fc�max minimum� maximum time for a controller frame

l maximum link latency and switch overhead
p a �ow�s path length number of hops�
ci the i�th cell transmitted in a �ow
sn n�th switch in a �ow�s path� � �! n �! p

T ci� sn� time at the end of the frame in which cell ci departs switch sn
Lci� sn� adjusted latency� T ci� sn� � T ci� s��

Table �� Symbol De�nitions

Since N� ! �i when log�N ! i� the sum has no more than log�N terms with the value �� and the
remainder of the sum is a power series bounded by ���� Thus�

E�C� � log�N �
�

�

B Bounds on Latency and Bu�er Space for CBR Tra	c

In this appendix� we show that we can provide end�to�end guaranteed performance for constant
bit rate �ows� even if the clocks in the network switches and controllers are known only to run at
approximately the same rate� within some tolerance� As discussed in Section �� a frame schedule
is pre�computed at each switch� assigning a �ow�s cells to a �xed number of frame slots� Because
the frame rate depends on the clock rate in each switch� the bandwidth delivered to a �ow varies
slightly and unpredictably� at each switch in the �ow�s path� We address this by adding extra
empty slots to each controller but not switch� frame� to constrain the controller frame rate to be
slower than the frame rate of the slowest possible downstream switch� Using this constraint and
some natural ground rules for controller and switch operation� we can demonstrate bounds on both
a �ow�s end�to�end latency and its bu�er space requirements� A �ow�s end�to�end throughput is
bounded by its rate on the slowest possible controller� Because each �ow has its own reserved bu�er
space and bandwidth� the behavior of each �ow is independent of the behavior of other �ows� our
discussion focuses on a single �ow at a time�

Table � summarizes a number of terms used in our proof� The minimum and maximum frame
times are in terms of real �wall�clock� time� that is� the nominal time for one slot � the number
of slots per frame � the maximum or minimum possible clock rate� Note that Fc�min � Fs�max�
the frame of the fastest controller is constrained to be longer than the frame of the slowest switch�
The link latency l is the maximum wall clock time from when a cell departs one switch to when it
is �rst eligible to be forwarded at the next switch� including any processing overhead at the switch�
Finally� the adjusted latency� Lci� sn�� is the wall clock time from the end of the frame in which cell
ci departs the controller s� to the end of the frame in which the cell departs switch sn� We use the
adjusted latency instead of the true latency because it is independent of which slots within a frame
are allocated to a particular �ow�

We temporarily make the simplifying assumption that each �ow reserves only a single cell per
frame� we remove this assumption later in this section� Each controller and switch obeys the reser�
vation � each forwards at most one cell per frame for each �ow� Further� switches forward cells in
FIFO order� with no needless delays � if a cell has arrived at a switch and is eligible for forwarding
at the beginning of a frame� then either that cell or an earlier queued� cell from the same �ow is
forwarded during the frame�

��

B�� Bounded Latency

The key observation to bounding the end�to�end latency is that if two cells� ci and ci��� depart a
switch sn in consecutive frames� then the adjusted latency of ci�� is less than that of ci� This is
because ci and ci�� must depart the controller in separate frames� and frames take longer at the
controller s� than at any switch sn�

T ci��� sn� � T ci� sn� �! Fs�max � Fc�min �! T ci��� s��� T ci� s��

T ci��� sn�� T ci��� s�� � T ci� sn� � T ci� s��

Lci��� sn� � Lci� sn� ��

Note that the queueing delay that cell ci�� experiences at switch sn may well be longer than
that of the previous cell ci� but ci���s end�to�end adjusted latency will be shorter than ci�s�

We de�ne an active frame to be one in which a cell is forwarded to the next switch� Because
switch frames occur more frequently than controller frames� at each switch there will be sequences
of active frames interspersed with inactive frames when there is no cell available to be forwarded��
The consequence of Formula � is that the worst case adjusted latency at a switch sn is experienced
by some cell ci that is sent in the �rst in a sequence of active frames � that is� the cell must be sent in
a frame immediately after a frame when the switch had nothing to forward� Because we assume the
switch does not needlessly delay cells� ci must have arrived at switch sn after the previous inactive�
frame started� in other words� no more than two frames before ci departed switch sn� The cell
must have departed the upstream switch sn�� no earlier than T ci� sn� � �Fs�max � l�� Since ci�s
adjusted latency in departing from the upstream switch sn�� is likewise bounded by some �rst cell
in a sequence of active frames� by induction we have�

Lci� sp� �! �pFs�max � l� ��

B�� Bounded Bu�er Space Requirements

We next derive bounds for the bu�er space required at each switch� Clearly� a bound must exist
because end�to�end latency is bounded� in this sub�section� we develop a precise formula for the
bound�

First� observe that there is a bound on the maximum number of consecutive active frames�
Formula � implies that with each successive active frame� adjusted latency decreases by at least
Fc�min � Fs�max� But Formula � implies that there is also a maximum adjusted latency� The
minimum adjusted latency is �Fc�max� this is negative because of the de�nition of adjusted latency
� a cell can depart the �rst switch s� in a frame that �nishes before the controller s��s frame does�
Thus� the maximum sequence of active frames is�

� �

�
�Fs�max � l�p � Fc�max

Fc�min � Fs�max

�

Since the frames immediately before and after this sequence are inactive� there could not be a cell
queued at the beginning of the frame before the �rst active frame� nor at the end of the last active
frame in the sequence� This means that the maximum length of time that a switch can continuously
have a cell queued� is�

�We consider only the buer space needed by queued cells that are eligible for forwarding� additional
�implementation�dependent� buer space may be needed by cells that are in the process of arriving at the switch�

��

Fs�max

�
� �

�
�Fs�max � l�p� Fc�max

Fc�min � Fs�max

��
��

During any period of time t� the maximum number of cells that could arrive at a switch is
� � b t

Fs�min
c� Two cells can depart the upstream switch� one at the end of a frame and the other

at the beginning of the next frame� both arriving at the beginning of the time period� From then
on� the arrival rate is limited by the fastest possible switch frame rate� Analogously� the minimum
number of cells that must depart the switch during an interval t in which there are queued cells is
b t
Fs�max

c � ��

The bu�er space needed at a switch can be bounded by the di�erence in the maximum arrival
rate and the minimum departure rate� over the maximum interval for which queued cells can be
present� Substituting that interval Formula �� for t in the arrival and departure rates derived
above� the bu�er space required is no more than�

� �
Fs�max � Fs�min

Fs�min

�
� �

�Fs�max � l�p� Fc�max

Fc�min � Fs�max

�
��

The above results were derived assuming that each �ow reserved only a single cell per frame�
For a �ow of k cells per frame� we must change the rules on switch and controller operation in the
obvious way � no switch or controller forwards more than k cells of the �ow in the same frame� cells
are forwarded in FIFO order� and if a cell arrives at a switch before the beginning of a frame� it
is either forwarded in the frame� or k previous cells of the �ow are forwarded� If we consider for
purposes of analysis� a �ow of k cells per frame to be partitioned into k classes� with cell ci assigned
to class i mod k�� the cells of a single class will be treated under these rules of operation� as if they
belonged to a �ow with one cell per frame�

Thus the bu�er space required for a CBR �ow is a constant factor times the number of reserved
cells per frame� and bu�er space required for all �ows is � � c� times the frame size� where c is
governed by Formula �� The value of c is determined by network parameters� clock skew� link and
switch delay� network diameter� and the di�erence between controller and switch frame size� For
many common local area network con�gurations� c is small� it can be made arbitrarily small by
increasing controller frame size� at some cost in reduced throughput�

C Statistical Matching Throughput

In this appendix� we describe the statistical matching algorithm more completely and show that it
allows up to �� �

e
��� �

e�
� � ��
� of the switch throughput to be allocated in any arbitrary pattern�

Recall from Section ��� that we divide the allocatable bandwidth per link into X discrete units� Xi�j

denotes the number of units allocated to tra�c from input i to output j� We assume temporarily
that the switch bandwidth is completely allocated� we will remove this assumption shortly�

The algorithm is as follows�

�� Each output j randomly chooses an input i to grant to� with probability proportional to its
reservation�

Prfj grants to ig !
Xi�j

X

�� Each input chooses at most one grant to accept it may accept none� in a two�step process�

��

a� Each input i reinterprets each grant it receives as a random number mi�j of virtual grants�
chosen between � and Xi�j according to the probability distribution�

Prfmi�j ! m� � � m � Xi�jg !

�
Xi�j

m

�
�

�
�

X

�m
�

�
X � �

X

�Xi�j�m

�
X

Xi�j

Prfmi�j ! �g ! �� Prf� � mi�j � Xi�jg

When j does not grant to i� mi�j is set to zero�

b� If an input receives any virtual grants� the input chooses one randomly to accept� In
other words� the input chooses among granting outputs with probability proportional to
the number of virtual grants from each output�

Prfi accepts jg !
mi�jP
kmi�k

If a grant is accepted� the input randomly chooses among the �ows for the connection according
to their bandwidth reservations�

The key to the algorithm is that each input i receives the same number of virtual grants from
an output j that it would receive had each of the virtual grants been made with probability �

X
by

an independent output� To see this� note that the probability that exactly m of Xi�j events occur�
given that each occurs with probability �

X
� has the binomial distribution��

Xi�j

m

�
�

�
�

X

�m
�

�
X � �

X

�Xi�j�m

��

Of course� an input i can receive a virtual grant from output j only if j sends a physical grant
to i in step ��

Prfmi�j ! m�m � �g ! Prfj grants to ig � Prfi chooses mi�j ! m�m � �jj grants to ig
�

Substituting in Formula
 with the probabilities from steps � and �a in the algorithm� we see that
the probability that input i chooses mi�j ! m is exactly the binomial distribution from Formula ��
for m � �� Since the probabilities in both cases must sum to one� it follows that the probability
that input i chooses mi�j ! � is also as speci�ed by the binomial distribution�

If an input receives any virtual grants� it randomly chooses one among them to accept� By the
argument above� the input will receive no virtual grant from any output with probability X��

X
�X �

Otherwise� the input will match some output� and because each virtual grant is made and accepted
with equal likelihood� each output is matched with probability proportional to its reservation�

Prfi matches jg !
Xi�j

X
�

�
��

�
X � �

X

�X�
!
Xi�j

X
� Prfi matchesg !

Xi�j

X
� Prfj matchesg

As X becomes large� �� X��
X

�X � approaches �� �

e
� ���� from above�

This result implies a rather surprising fact� the probability that a given output matches is
independent of the input to which it grants� For

Xi�j

X
� Prfj matchesg ! Prfi matches jg

! Prfi matches jjj grants to ig � Prfj grants to ig

! Prfi matches jjj grants to ig �
Xi�j

X

�

or
Prfj matchesg ! Prfj matchesjj grants to ig�

This fact is useful in analyzing the e�ect of running a second iteration of statistical matching�
The second iteration is run independently of the �rst� If input i and output j are matched on the
second round� a connection between them is made provided that neither was matched on the �rst
round�

Prfi matches j in two roundsg ! Prfi matches j in round �g�

Prfi matches j in round � and neither matches in round �g

Now� matches in the two rounds are independent and equally likely� Moreover� the events �i un�
matched on the �rst round� and �j unmatched on the �rst round� are either independent or positively
correlated� Consider the probabilities of i and�or j being matched conditional on each possible re�
cipient of j�s grant� If j grants to i� then it is impossible for j to be matched while i is unmatched�
so �i unmatched� and �j unmatched� cannot have negative correlation� Now suppose j grants to
some other input h �! i� and there is no output k such that Xh�k and Xi�k are both positive� Then
the events �i unmatched� and �j unmatched� are independent� because no other choice made in
the algorithm e�ects both events� Finally� suppose j grants to h �! i� and there is an output k such
that Xh�k and Xi�k are both positive� Then the potential matching of h to k con�icts both with
the matching of i to k and that of h to j� inducing a positive correlation between the events �i
unmatched� and �j unmatched�� We have now established that

�xPrfi and j unmatchedjj grants to xg � Prfi unmatchedjj grants to xg �

Prfj unmatchedjj grants to xg�

Using the previous result that the probability of j matching is independent of the input to which it
grants� and summing over all inputs x we have

Prfi and j unmatchedg � Prfi unmatchedg � Prfj unmatchedg

Finally� we can conclude

Prfi matches j in two rounds g � Prfi matches j in round �g�

Prfi matches j in round �g �

Prfi unmatched in round �g � Prfj unmatched in round �g

�
Xi�j

X
�

�
��

�

e

�
�

�
� �

�

e�

�

The last step in the analysis is to consider what happens when the switch is not fully reserved�
On each round� an input i or output j� with less than a full reservation can simulate being fully
reserved by assigning the unreserved bandwidth� denoted by Xi�� resp�� X��j� to an imaginary
output input�� If output j is less than fully reserved� it simulates granting to its imaginary input
i�e�� sends no grant to any real input� with probability X��j�X� Similarly� an input i that is less
than fully reserved randomly chooses a number mi�� of virtual grants from its imaginary output�
using the probability distribution�

Prfmi�� ! m� � � m � Xi��g !

�
Xi�j

m

�
�

�
�

X

�m
�

�
X � �

X

�Xi�j�m

The input accepts such grants by rejecting grants from real outputs� in proportion to their number�
just as for grants from real outputs� When a second round match con�icts with a �rst round match
to an imaginary input or output� it is not necessary to discard the second round match� Retaining
it can only increase the throughput derived above�

��

