Eobert g. Munck
Rcbert L. Abrahanm
Steven T. Carmody

Richard J. Harrington

Richard H. Kogut

Edward D. Lazowska

The Ccmputing Laboratcry
Brown University
Providence, R.I. 02912

January 9, 1972

ABSTRACT

SUEERCP is a redesigned version of IEM's CP-67/CHMS providing
imgroved system performance and better administrative control
over the allocation of resources. It replaces the standard CP-67
dispatcher and paging system with a table-driven scheduler and a
different configuration of dispatching queues, and with a
#glot-scrting® pager, The resultant systenm allows the
specification of the machine requirements and political
importance. of each user, giving greater flexibility in the
administration of the system. The present paper describes the
algorithms and implementation of SUPERCP.

Key_Hords_and_Phrases

Time-sharing, multiprogramming, virtual machines, CP-67,
schedulers, table-driven dispatchers, paging systems,
slct-sorting, working set, interactive systems, batch systeams.

CR_Categories

4,32, 4.30, 2.43

39

INTRODUCTION

SURERCP . is an extension of IBM's CP-67/CHS (Control
Program - 67/Cambridge Mcnitor Systen) with the intent of
froviding better system performance and increased flexibility in

the allocation cf resources, It was developed at Brown
University during the first half of 1971 as an outgrowth of the
course Applied Mathematics 103, "Design of Multiprogramming

Systems."

CP-67 is a time-sharing system for the IBM/360 model 67
which supports a number of "virtual machines," simulations which
appear to be real ,360's to their |users. This paper must
rerforce assume a familiarity with CP-67/CMS as detailed in the
IBM SRL "CP-67/CMS VUser's Guide," GH20-0859, and a limited
familiarity with the internals of CP-~67 as detailed in "CP-67
Program Logic Manual," GY20-0590.

CP-67 is used at Brown for three major purposes: interactive
[rogramsing using CMS (five to ten virtual machines during
average periods), batch processing using 0.5./360-P.C.P. (two or
three virtual machines), and interactive problem solving using
APL (a single virtual mwmachine running DOS/APL, £five to ten
users). Batch .is the traditional method of computing at Brown,
and still accounts for about 75 percent cf computer use, but CHS .
and APL are both growing in usage, with APL made available to the
entire student bedy in the fall cf 1971.

These three methods of computing put guite different demands
cn the computer in terms of the characteristics of the service
that they require. CP does not provide for different "types" of
users, and sc could not provide ideal service to any one of the
types in the presence of the others. In addition, Version 3 of
CP did not provide for some users being more important than
others, in the way that a batch machine is more important than a
CMS machine or a professcr is more important than a student
{Vversion 3.1 does provide a priority scheme). There was
therefore 1little flexibility . possible in the management of the
systenm,

The different service requirements of the various virtual
machines can be characterized as a two-parameter committment of
service., The first parameter is the percentage of total
available CPU time which the machine requires. This figure would
be high for batch machines (for example, .25), medium for the APL
machine (+10), and 1low fcr most CMS machines (.05). The second
parameter is the time frame over which the first parameter is to

40

te applied, that 1is, how often the system must check that it is
meeting the CPU percentage requirement. This fiqure, called the
“"slot length,"™ may be thought of as the response time desired,
and would therefore be low for CMS machines (for example, one
second) , very lcw for the APL machine since it must respond to
several users (.5 seconds), and could be quite high for the batch
machines (20 seconds). A machine with service parameters of
(.02,1), for example, would be guaranteed at least 20
milliseconds of CPU time within 1 second of reguesting it, and
one with parameters of (.25,20) vwould be guaranteed five seconds
ct CPU cut of every twenty, but may not get the CPU at all until
fifteen seconds after requesting it (and should thereafter get
100 percent of the CPU for five seconds).

These parameters are thought of as being sufficient to
satisfy the user under all conditions, that is, an important user
has no right to expect more than his . committment, even if the
cther users on the system are less important than he. However,
when the system 1is unable to meet its total committment, it
should wuse an external priority, the M"political factor," to
determine which committments it should try hardest to meet. Each
virtual machine should therefore have associated with it in the
directory three numbers, the CPU percentage, the slot length, and
the political factor.

Based on the above requirements and the general principles
of multiprogramming systems design, the following design goals
were set for the SUBERCP proiject:

The Dispatcher

1) . Sugport explicit requirements for CPU percentage and
respense time.

2) . Use an explicit political factor when not meeting these
requirements.

3). Follow Denning's suggestion im "“A Working Set Model of
Prcgram Behavior" (1) to attempt to run only those tasks
which have their "working set" in core.

4). Make the dispatching algorithm easy to change within wide

limits, to allow for tuning, experimentation, and unforeseen
regquirements, :

41

The Paging Systen

5). Prcvide "slot sorting® cf page requests and chaining of drum
I/C operations to reduce interrupt traffic.

6) . Provide fully dynamic drum allocation to eliminate the
possibility of virtual machines being unfairly relegated to
disk-cnly paging.

7).« Be able to handle 1large clusters of page requests
efficiently and quickly, as the dispatcher will be
requesting the paging-out <¢f all pages belonging to a
virtual machine at once,

8) . Maximize wuse of the drum by migrating lightly-used pages
frem drum to disk.

Miscellaneous

9) . Make the conversion of a CP system to SUPERCP as easy and
release-independent as possible. Use either UPDATE files
keyed to the origimnal CP source or complete replacement of
modules, with the replacement being transparent to the rest
of the systen,

10) « Put sophisticated measurement and evaluation tools into the
original design, and allow the system itself to use them in
adjusting its algorithms,

11) . Build debugging tools into the systen.

12) . Prcvide flexible shared segment capakilities.

These design goals were met by the replacement of the CP
Lispatcher with a "takle driven" dispatcher and queue system
guite eimilar tc those in TSS(2), and a replacement of the CP
paging system by one similar to that found in TSS and the
University of Michigan'®s UMMPS(3).

42

THE_PAGING_SYSTEM

THE PAGING DRUM HANDLER

The paging system of SUPERCP may be looked upon as an
independent task rather than a subroutine called by other tasks.
The paging drum handler (PDH) takes as its input requests placed
on gqueues by other tasks, starts the I,/0 operation, "goes to
sleep" when it has nothing to do, and .is awakened by I/0
interrugts from the drum. Tasks having paging requests that they
wish serviced need only place them on the pager's request queues
and, if the pager is not waiting for an interrupt from the drum
(a rare case), "shoulder tap" it so that it will check its input
gueues,

There are several advantages to this type of structure: It
allows faster response to drum requirements since the PDH is
ccncerned only with running the drum and is given inmediate
control when a drum interrupt happens; It reduces overhead since
the PDH will attempt to empty out its input queues whenever it
runs, thus handling a large number of requests (up to 18/drum) in
one invocation instead of one invocaticn per regquest; And it
frovides a high degree of isolaticon of the paging mechanism from
the rest of the system, making checkout and modification easier.

SLCT~SOEBTING

The PDH uses a slot-sorting technigue similar to that found
in 1SS, UMMPS, and CP-67 Version 3.1. The 200 tracks on the drum
are divided into 100 pair, and each pair is formatted into nine
slots, as shown in figure 1, Note that slot 5 consists of a
record written half om the first track and half on the second, an
situaticn acceptable to the hardware. In actual fact, small
dummy records are written between slots, to allow time for
switching from one head tc another between slots. Thus it is
possible to read slot 1 from track 2, slot 2 frem track 198, slot
3 from track 100, etc., and in fact to read nine pages in two
revolutions of the drum, with each page possibly coming from a
different track. The only restriction is that each page must be
in a different slot, although this restriction may be relaxed
under certain conditions explained below.

43

r ar 1 Tr 1T/
i 1 1 Z I 3 I 4 11 51
L J L F I . il Ko S T 4
r~r Ir 1r 7 3
I 5 i 6 11 7 11 8 1 g |
b d b 4L Y 4L 4

Figure 1. Format of a pair of drum tracks.

The PDH <contains for each drum in the system two channel
frograms consisting of nine SEEK/NOP sections chained together
into a single program, It has as input nine gueues for page read
requests and one Jueue for write requests, with the read requests
placed cn the queue corresponding to the slot in which the page
requested resides on the drum. Write 1requests do not specify
particular slots, since the PDH will allocate drum space to then
as avallakble. The PDH then follows the fcllowing algorithms:

1) . Removes the top request from each read queue, changes the
NOE in the corresponding SEEK/NOP section to a READ, and
fills in the appropriate core addresses.

2). If any of the slots are not filled im (corresponding read
queue was empty), checks to see if there are free pages on
the drum for that corresponding slot. If so, dequeues the
top request in the write gqueue, changes the corresponding
NOP to a WRITE, and fills in the appropriate core addresses.

3). Starts the channel prcgram as channel progranm 1.

4). If there are requests left on the queues, repeats steps 1
and 2 for the second channel progranm.

5)« Changes the NOP which is at the end of channel program 1 to
a TIC (Transfer In Channel) to channel program 2, with PCI
{Program Controlled Interrupt) set sc that an interrupt will
occur when channel program 1 is finished.

44

6) . When the PCI comes in, marks all the requests in channel
prcgram 1 as finished, changes it back to SEEK/NOP sections,
and changes the TIC at the end back into a NOP.

7). 1If there are more requests, repeats steps 1 and 2 for
- channel program one and changes the NOP at the end of
channel program 2 to a TIC/PCI,.

The PDH will therefore keep the drum running continuously
under a moderately heavy paging load, and will te able to service
up to 270 requests per seccond, with conly thirty invocations of
the PDH per second.

A unique modification tc the above algorithm consists of the
following: After step 2, the PDH checks to see if there are any
additional read requests for a slot and if the two slots which
overlap that one on the other track are empty. Thus if there were
two regquests -for slot 7, it would check if slots 2 and 3 vere
filled in, If they were not, it changes one of them to a read
which =satisfies the additional slot 7 request. The channel
program will now read (in order) slots 1, 7, 4, 5, 6, 7, 8, and
9., This modification allcws reading of more than one page from
the same slot under restricted conditions.

There are a number of important advantages to slot-sorting
in this fashion. It prcduces a much lower interrupt traffic than
wculd a reguest-at-a-time system, since there is one interrupt
for every chain of up to nine requests, but conversly delays
notification of the completion of a reguest until all nine have
teen dcne. The PDH runs most efficiently when page tratfic is
heaviest, and would in fact have the minimum overhead per request
~when request demsity is greater than or equal to the maximum it
can handle., Finally, it makes write reguests very inexpensive to
the system, since they are handled in what would otherwise be
idle time, and "cost" only the trivial overhead of changing a NOP
to a WRITE.,

PENDING QUEUES

SUEERCP follows the rather vague policy of attempting to
perform operations as sccn as possible and defering having that
operaticn be irrevocable as long as possible. This is best
illustrated by the system of pending queues used by the system to
handle fpages.

A core page may be in one of three states:

45

g

2.

Cwned by CP; contains either CP ccde cr
Owned by a Virtual Machine (VM); contai
FREE:; contains no useful data.

User pages may be in one of four state

control blocks.

ns user data.

s

In Core; Page is occupying a core page and is in active use.

Core Pending; Page has been written to
has not yet been «changed in core.
the user, but can be made available wi
a. read operation,

Drum Page; Page has been written to se
cory e€xists in core,

secondary storage but
It is not available to
thout the necessity of

condary storage and no

Drum Pending; Page has been read from secondary storage and is

in active use, but has not yet been
The copy on drum is valid, and the
Pending or a Drum Page without the
operation.

46

modified by the user.
page can be made Core
necessity of a write

- -1 write to drunm r

4 in ccre i- —— #| core pending |

L 4 (s , : v
b | I

changed |} paye requested | | core page

in ccre | — e 4 | re—allocated
i ¢) - ¥

f . | page 1n r)

{ drum pending {# | drum page {

| . E] s L ; ¥

Figure 2. Possible states of a user page.

" Wwhen the system needs a page, it will choose in the
following crder:

1. A Free page.

2. A Ccre Pending Page, converting it into a Drunm Page:without
having to write it out. ' '

3. A Drum Pending Page, converting it into a Drum ‘Page without
having to write it cut. :

4, Do scmething else, explained later.

Using the “"pending" concept, the systenmn can write cut user
pages at any time and as often as it wants, since they will be
retained as Core Pending until the core is actually needed and
since write operations are cheap. Pages are only irrevocably
"paged out" (moved from Core Pending tc Drum Page) only when
pnecessary and, since the page which has been on the Core Pending
queue for the longest time is choosen, the algorithm resembles
the highly-efficient Least-Recently Used (LRU) algorithm for
simpler systenms. ‘

This setup increases the apparent ccre size of the machine,
since the set of core pages immediately available to the systenm
consist of Free cpages plus Pending pages, while the set of core
pages immediately available to the user consist of In Core pages
plus pending pages. The same is true of secondary storage space,

A7

and the total effect is to provide better multiplexing of primary
and secondary storage. A very nice effect is that many page
cperaticns are no longer done on a demand basis, but can be done
during relatively idle time, thus reducing overhead during heavy
loads., -

MIGRATICN

Under certain conditions, the system will be aware that a
page is not going to bte referenced for a very long time. This
may be when the VM owning the page goes into wait state with an
outstanding read request to the console, when a batch machine
waits on the card reader and there are nc more spooled files for
it, or when a page on drue -has not been referenced for a very
-long period. Pages of this type should not be kept in core
(ocbviously) 'or on drum, but should be con disk,- disk being the
slowest and cheapest storage available. It is therefore possible
to set a "disk preference Lkit" in the write request for such a
rage. The PDH will check if the disk channel is heavily loaded
and, if nct, create a CP Request Block to write the page to disk
in the same way that ncrmal CP would. XIf the channel has a heavy
load, the PDH will ignore the disk preference bit. Also, if a
page has been on drum for a long time, it is eligible for
"pigration" to disk. Such a page would be "Disk Pending" as long
as a valid copy exists on both drum and disk, and a "Disk Page"
when the drum copy is wiped out,

This would result in a true three-level store, using a LRU
algorithm to determine the apprcpriate level for a page, and
would bhave the effect of freer page movement, with less
likelihcod of *®choking,"™ but it does have some disadvantages.
Since it is not possible to move a page directly from drum to
disk, the PDH must decide if it can afford to use a core page for
the time involved, 1if there is sufficient idle time on the drum
channel to read the page in, and if there is sufficient idle time
on the disk channel to write the page out, Because these
decisions are difficult for the PDH tc make, and because there is
a fair chance that migraticn will result in more overhead than it
saves, the migration function has not yet been implemented,
rending further study.

48

IHE CISEATCHER.

The SUPERCP dispatching algorithm closely resembles that of
158S, but wWwith certain simplifications made possible by the
simpler design of CP. All virtual machines in the system will
reside in one of four gueues, as follows:

THE DEAL QUEUE.

The Dead queue contains, in no particular order, all virtual
machines which are in long term wait. Since it is not always
possible to tell exactly why a virtual machine has entered wait
state, i.e. what it®'s waiting for, "long term wait" has been
defined as being in wait state with no selector channel I/0
outstanding. Fer an interactive VM, this will normally happen
when it is waiting for I/0 from the console, and for a batch
machine when its virtual card reader is enmpty.

THE REALY QUEUE

The Ready Queue contains those VM's vwhich are ready to use
the CPU, that is, those not in wait state, and whose committments

either are or are not currently being met. - Each VM has
associated with it a Scheduled Start Time (SSI) computed from its
service parameters. SST -is defined as the time when the system .

must give the VM the CPU if it is to meet its time slot and CPU
percentage requirements. For example, if a VM with parameters
(.25,20) becomes ready to use the CPU, its SST will be 15 seconds
in the future, since it must be started by then if it is to meet
the committment. VM's whose . SST is in the past, i.e. has come
and gone, are said to be behind schedule.

The Ready Queue is in priority order, where the pricrity is
a rather complex functicn of. the political factor (importance},
the amcunt behind schedule, and the Scheduler Table Priority
{explained below). This priority is wused only to determine the
initial ©position of the VM in the gqueue, and thereafter its
priority increases only as a coanstant function of the amount
behind schedule, that is, increases at the same rate for all VM's
in the gqueue. This eliminates +the necessity of constantly
re-ordering the gueue as virtual machines become further and
further behind schedule. VM's which are ahead of schedule have a
negative priority, and are therefore at the end of the queue.

49

THE DISPATCHABLE QUEUE.

Virtual machines in the Dispatchable queue are the only ones
which are eligible for the CPU, and therefore the only ones being
multiprcgrammed. These tasks will either currently have the CPU,
ke ready for the CPU, or be in short term wait. It is a design
goal of SUPERCP that tasks in the dispatchable queue should have
their working sets in core (for a definition of "working set,"
see Denning{1)). Obviously, SUPERCP <cannot follow Denning’s
definition exactly in determining working set, as this would
involve intolerable amounts of overhead, but it does make an
attempt to determine the working set size (number of pages in the
working set, WSS) and limits membership in the dispatchable queue
such that the sum of WSS's of dispatchable VM's is less than the
number cf available core pages.

The Dispatchable queue is ordered by priority, where that
priority is again a function of the amount behind (or ahead of)
schedule, the political factor, and the Scheduler Table Priority.
It should be noted that this priority will decrease as the VN
receives service. Simply stated, the Dispatcher gives the CPU to
the highest VM in the dispatchable gqueue which is not in
short-ternm wait. '

THE SCHEDULER TABLE., .

Virtual machines in the dispatchable gueue (and, to a lesser
extent, in the ready queues) are contrclled through the use of
the Scheduler Takle. The Scheduler Table is an array of up to.
256 entries called STE's (Scheduler Table Entries), each STE
containing a number of parameters. At any time, a VM is
associated with a particular STE, and may move from one STE to
ancther for varicus. reasons,

Each STE consists of 12 oné-byte parameters, with names and
meanings as follows:

Exiority. The STE priority, to be used as part of the
calculation of the VM's priority.
Cuantum. The amount of CPU time, in units of 50
' milliseconds, to be given the VM while in this
STE.
Page_Max. The maximu® number of page reads allow the VM in

this STE. This corresgonds to Maximum WSS.

Eage Max HIG., "Where To Go" The next STE to be used if Page Max
is exceeded.

50

Eage_Min. Minimum number of page reads allowed the VM in
' this STE. :

Fage _Min_HWIG., Next STE if Page Min is ngt exceeded.

SI0 _Max. Maximum number of SIO (Start I1I/0) operations’to a
device on the . selector channel allowed the VM
while in this STE.

SI0O Max WIG, Next STE if SI0O Max is exceeded.

e

SIQ Hin, Minimum number of SIO%s allowed the VM.
SIO _Min HWIG, Next STE if SIO Min is not exceeded.

NISE _RIG. Next STE if the gquantum ends with Page reads and
SIO*s within limits (Normal Time Slice End).

FISE_WIG Next STE if the virtual machine is forced to Time
Slice End.

Each VM has specified (in its directory entry) an initial
STE to be ‘used when it leaves the Dead gqueue, These initial
STE's are a special format, containing . only an initial Working
Set Size (WSS) estimate and a normal STE number to be transfered
to immediately. Currently there are three initial STE's, for
CMS, 05, and APL.

The Scheduler Table is probably best thought of as a tabular
representaticn of the state diagram of the dispatching algorithnm,
although actually drawing the state diagram would be messy since
each state has six outbound edges and there may be up to 256
states. A VM will move around in the Scheduler Table in a way
determined by its execution characteristics. For example, a
CPU-bound VM which stays within Page and SIO bounds might move
through a chain of STE's with successively more quanta and lower
priority, while a VM which consistantly exceeds SIO Max might
move intc a ring of SIE's giving a single quantum and high
priority.

It can be seen that it is possible to have a fairly complex
dispatching algorithm specified in the table. As a bonus, it is
rossible te have several distinct algorithms in concurrent use,
simply by having “"unconnected graphs," i.e. distinct sections of
the table with no transisions between them. This is the case in
the current system, where we have distinct (and quite different)
algorithms for CMS, 0S, and APL.

51

THE ACTIVATE DECISION,.

The decision to move a VM into the Dispatchable Queue,
called activatiocn, is an important cone since it determines the
degree cf multiprcgramming of the system. This decision is made
by the module ACTIVATE, which is called when (1) a VM moves fron
Lead to Ready; {(2) a VM moves from Dispatchable to Dead; (3) 200
milliseconds elapses since the last call; or (4) if all VM's 1in
Dispatchable are 1in short-term wait (the CPU has nothing better
to do). ACTIVATE resets the priorities and calculates the WSS of
all vVM's in the Dispatchable Queue and subtracts the total of the
WSS's from the number ot pages in the system to get the number of
available pages. It then checks each VM 1in the Ready Queue,
starting at the top, to see if that VM's WSS is smaller than the
pumber c¢f available pages, If it is, ACTIVATE moves that VM into
Lispatchable, re-calculates its priority, subtracts theVM's WSS
from its estimate of the number of available pages, and goes on
to the pext V¥ on the Ready Queue,

If a VM will not fit in «core, ACTIVATE checks if the Ready
VM's priority is higher thanm any of those in Dispatchable, that
is, if it can "bump" any dispatchable VM's. If the Ready VM can
bump enough dispatchable VM's so that sufficient pages will be
freed tc hold its WSS, those VM's will be forced to Time Slice
End (FPISE), moved from Dispatchable to Ready, and their in-core
rages qgueued for writing out. The bumping VM is then activated,
and ACIIVATE continues to check the Ready Queue. 0Only one
bumping operation is allowed for each call to ACTIVATIE.

WORKING SET SIZE CALCULATICN.

Working Set Size is calculated by maintaining an exponential
average of the number of pages the user has in core (NUMPAGES).

This average 1is related to WSS because of the following
mechanismns:

1. A VM in the Dispatchable Queue does not have pages stolen
frem it by the paging mechanism. When a page is needed, and
there are no free or pending pages, the lowest priority
dispatchable task is forced to Time Slice End, and all of
its pages written out.

2). A module called FLUSH is called for each VM 1in the
dispatchable queue at frequent intervals. FLUSH checks the
referenced bit for each in-core page the VM owns. If the
page has not been referenced, it is queuwed for writing out
(if necessary) and made unavailable to the user. If it has
been referenced, the referenced kit is turned off.

92

FLUSH is called for a VM only if it bas had at least eight
eilliseconds of CPU since the last call to FLUSH. This means
that pages not referenced within 8 ms. will be gotten rid of and
NUMPAGES will be pages referenced in the last 8 ms., a good
definiticn of working set. It should be noted that FLUSH is much
less drastic than it seems to be, since the pages it writes out
will remain available on the PENDING queue for quite some tinme.

The routine which «calls FLUSH is entered whenever the CPU
has nothing else to do, that is, just befcre loading a wait state
ESW, and it momentarily enables interrupts often during its
operaticn. In +this way it is guaranteed that FLUSH will not
reduce the capacity of the system, since it simply fills up some
of the unavoidable wait time.

An interesting and desirable result of this algorithm is
that thrashing should be self-correcting. As the system beconmes
page-bound, there will be more idle time available for calling
FLUSH. #orking Set Size estimation will therefore become more
accurate, the degree of multiprogramming will be reduced by
ACTIVATE, and thrashing will cease.

53

SUEEBCP was written in such a way that it will hopefully be
adaptable to future versions of CP., The bulk of the code is in
complete replacements of CP modules (mainly DISPATCH and
PAGTRANS) and in new modules (ACTIVATE, DRUMIO, etc.). There are
a few ninor changes to existing CP modules, and these are done
using the UPDATE facility of CHS, The adaptation of SUPERCP to
CP 3.1 tock 1less than one man-week of work, despite massive IBM
changes in precisely the areas where SUPERCP is different.

Use of SUPERCP by other installations should be quite
simple, with one reservation, Brown has a gquite elaborate
accounting system in both CP and MVT/65, including such features
as temporary CMS machines, individual accounting for DOS/APL
users by CP, and running account files. on disk for about 4,000
USErS. This system has interacted with SUPERCP in several
places, the major cne being that virtual machines no longer have
rasswords, the password being instead associated with the account
which cwns the VM. SUEERCP uses the UFDPASS field in the
directory for slot-length, guarantee, and initial STE values.

Intuitively, SUPERCP should be even more effective in a
large configuration than it is in Brown's 512K , one-drum /67.
We would be very interested in seeing it run on different
configurations and in different environemnts., If you are
interested in SUPERCP, contact Richard Kogut or Robert Munck at
401=-863-2221. ¥

54

ER e L

(1)

(2)

(3)

Denning, P.J. "The Working Set Model for Program Behavior,"
cAcHM 11:5 p. 323 (May 1968)

IBM Corporation, System/360 _Time_ _Sharing_System_ BEesident
Sugpervisor, PLM Y28-2012

Doherty, W.J. "Scheduling TSS/360 for Responsiveﬁess," Proc
FJCC, p. 97 (1970)

Alexander, M.T. Time_ _Sharing_ _Supervisor_ _Programs, The
University of Michigan Computing Center, May, 1971

Bernstein, A.Jd., and Sharp, J.C., "A Policy Driven Scheduler
for a Time Sharing System," CACM 14:2 p. 74 (Feb. 1971)

55

