CEO Summit

Discovery happens here.

Tech To Serve

Ed Lazowska Bill & Melinda Gates Chair Paul G. Allen School of Computer Science & Engineering University of Washington

May 16, 2018

Welcome!

Seattle in 1977

Since that time ...

McCAW CELLULAR, INC. Today's mobile communication services

Desktop publishing

Electronic commerce

Commercial cloud computing

1970 Ford Mustang

2015 Ford Mustang

Size: about the same Speed: about the same Efficiency (MPG): about the same Value (cost relative to performance): about the same

1971 Intel 4004 (2,300 transistors)

2015 Intel Xeon (4,300,000,000 transistors)

Size: area occupied by a transistor reduced by **1,000,000x** Speed: operations per second increased by **100,000x** Efficiency (operations per watt): improved by **6,750x** Value (dollars per instruction): improved by **2,700x**

1970 Ford Mustang

Keon[®] E7

2015 Intel Xeon

What if cars had improved as rapidly as microprocessors?

Size: A car would be smaller than an ant (About 1/5th of an inch long)

Speed: A car would go 6,000,000 miles per hour (San Francisco to New York in 1.7 seconds)

Efficiency: A car would get 100,000 miles per gallon (San Francisco to New York on 1/2 cup of fuel)

Cost: A car would cost less than \$10

Computer Science has changed also: From smaller/faster/cheaper to tackling societal

Energy & Sustainability Electricity \$46.27 (329) iii. UNIVERSITY OF WASHINGTON PLAD

From smaller/faster/cheaper to tackling societal challenges: Tech To Serve

Mobile Phones for Health

Shwetak Patel Washington Research Foundation Entrepreneurship Endowed Professor Paul G. Allen School of Computer Science & Engineering University of Washington

May 16, 2018

Point of Care Diagnostics

Another Paradigm Shift in Health Care

Continuous Capture of Physiological Data

HR

bpm

The Modern Smartphone

Mobile Health Sensing

Using existing sensors on mobile phones for health sensing

Using Mobile Phones for Diagnostics

SpiroSmart: Mobile Phone Spirometer

SpiroSmart: Mobile Phone Spirometer

SpiroCall: Expanding to Any Phone

CoughSense: Tuberculosis Study in South Africa

HemaApp: Measuring Hemoglobin with a Phone

Measuring Hemoglobin with a Phone

BiliCam: Newborn Jaundice

BiliScreen: Pancreatic Cancer

OsteoApp: Screening Osteoporosis

OsteoApp: Screening Osteoporosis

OsteoApp: Screening Osteoporosis

Osteoporosis

Challenges and Opportunities

Integration into commodity phones Trust Regulatory Patient – Provider relationship Training the next generation health professionals

Thanks!