An OS for the Data Center

* Server I/O performance matters
* Key-valyestores web & file serve ¢ managers, ...

* Example
e = 7 $1,200
Intel X520 Intel RS3 RAID Sandy Bridge CPU
10G NIC 1GB flash-backed cache 6 cores, 2.2 GHz

2 us / 1KB packet 25 us / 1KB write

Can't we just use Linux?

Linux I/O Performance

[% OF 1KB REQUEST TIME SPENT \

. A HW 18% Kernel 62% App 20% 9 us
Redis

Kernel mediation
is too heavyweight

Kernel
. . Data
|/O Processing Copying

L Path

RAID Storage

10G NIC
2 us / 1KB packet 25 us / 1KB write

Arrakis Goals

* Skip kernel & deliver 1/O directly to applications
* Reduce OS overhead

* Keep classical server OS features
* Process protection

Resource limits

|/O protocol flexibility

Global naming

* The hardware can help us...

Hardware I/O Virtualization

* Standard on NIC, emerging on RAID

* Multiplexing praymep
e SR-I0V: Virtual PCl devices
w/ own registers, queues, INTs User-level = User-level
~ VNIC1 VNIC 2

* Protection

* [IOMMU:
Devices use app virtual memory Packet filters

" Ratelimiters .~

* Packet filters, logical disks:
Only allow eligible 1/0

* |/O Scheduling \ |

* NIC rate limiter, packet schedulers Network

How to skip the kernel?

7 B
Redis
A\ Y,

g A
Naming

Access control

I/O Processing

A
D
=
D
YA

k Protection

/

/O Devices

- J

Data
Path

Arrakis I/O Architecture

Control Plane

4)

Kernel

Naming

Access control

Data Plane

//

//

Redis

Resource limits

(III
_

|/O Processing
AN /

I Data Path

, I
1/O Devices

Multiplexing

N_//0scheduiing__[§J

%

Arrakis Control Plane

* Access control
* Do once when configuring data plane
* Enforced via NIC filters, logical disks

e Resource limits
* Program hardware |I/O schedulers

* Global naming
* Virtual file system still in kernel
* Storage implementation in applications

-

Kernel

Access control

Resource limits

/IIE
o

Storage Space Allocation

Virtual Storage Area

Free space

Separate Naming From
Implementation

e Virtual Storage Area

/tmp/lockfile
/var/lib/key value.db
/etc/config.rc

Indirect IPC interface

open(“/etc/config.rc”)

Arrakis I/O Architecture

Control Plane

4)

Kernel

Naming

Access control

Resource limits

/III
o

Data Plane

Redis

|/O Processing
y

I Data Path

1/O Devices

Multiplexing

N_//0scheduiing__[§J

%

Storage Data Plane: Redis

Persistent Data Structure

 Examples: log, queue
* Operations immediately persistent on disk

Benefits:
* In-memory = on-disk layout
* Eliminates marshaling

e Metadata in data structure
e Early allocation
e Spatial locality

 Data structure specific caching/prefetching

* Modified Redis to use persistent log: 109 LOC changed

Arrakis Device Emulation

r', Round-robin
over all apps

Vgia e Virtual Descriptors

Translation Table

Emulation

App O, Disk 1, LBA 10G, size 1GB
g Core

Lb e s Rewritten Descriptors

Evaluation

Redis Latency

* Reduced (in-memory) GET latency by 65%

Linux FLAW iRy Kernel 62% App 20% 9 us
Arrakis HW 33% liblO 35%

App 32% 4 us

* Reduced (persistent) SET latency by 81%

Linux (ext4) [SNAEL Kernel 84% I:Z 163 us

Arrakis HW 77% Iil;;? App 15% 31 us

Redis Throughput

* Improved GET throughput by 1.75x
* Linux: 143k transactions/s
e Arrakis: 250k transactions/s

* Improved SET throughput by 9x

* Linux: 7k transactions/s
* Arrakis: 63k transactions/s

Redis Throughput

120
100

80

Throughput

[k transactions/s] 60

40

20

SET operations

9x

1x

Linux Arrakis Arrakis
Intel RS3 Intel RS3 ioDrive2
[25us] [25us] [15us]

memcached Scalability

1200

1000

800

Throughput

(k transactions/s) 600

400

200

0

10Gb/s interface limit

.1x
2X
1.8x I
1 2 4

Number of CPU cores

M Linux ™ Arrakis

Getting even more performance...

* POSIX requires data copy for buffering
» send(): Synchronous packet transmission
* recv(): User specifies receive location

* Arrakis/Zero Copy
* Modify send() so that libOS returns buffer when done
* Modify recv() so that libOS specifies buffer to use

* Port of memcached to Arrakis/Zero Copy
 TX: 63 LOC changed, 10% better latency
e RX:11 LOC changed, 9% better latency

Single-core Performance

UDP echo benchmark

10Gb/s interface limit
1200

3.6x

1000

3.4x

800
Throughput 600 23
(k packets/s)

400

1x
" .
0

¥ Linux ™ Arrakis/POSIX ™ Arrakis/Zero-copy " Driver

Implication

We’'re all OS developers now.

Future Directions: Devices

* |/O hardware-application co-design
* At 40 Gbps, even a single cache miss is too expensive

* Application needs fine-grained control (aka OpenFlow)
 How arriving packets are routed to cores

 Where in memory or cache to put the packet (or portion of
packet)

 Under control of the sender or receiver, or both

e Similar control needed for persistent memory
controllers

* Opportunity to rethink the device driver interface

* Application-level safe sandboxing of third party drivers
* Rethink the POSIX API for fast data processing

Future Directions: Storage

* Fast persistent storage is here
 DRAM-+flash, or memristors, or phase change memory

* Rethink distributed systems when networking and
persistent memory are both very fast

* Ex: many data centers observe a non-trivial number of
hardware faults

* On Arrakis, Byzantine fault tolerance protocols that run
much faster than today’s Paxos or primary/backup
replication

* Application-specific storage system design

* LFS, WAFL, write-ahead logging, ...

* Application management of caching, prefetching, and the
storage hierarchy

Future Directions: Networking

* Opportunity to rethink congestion control/resource
allocation in the data center network
 TCP mechanics no longer enforced in the OS kernel
* For multi-gigabit networks, packet loss is a terrible way to
signal congestion
* Dynamic negotiation of application-specific network
protocols
* Beyond TCP: PCP, SPDY, QUIC, ...

* Lower OS overhead => more network traffic
* Network is already a bottleneck

Arrakis Summary

* OS is becoming an I/O bottleneck
* Globally shared I/O stacks are slow on data path

* Arrakis: Split OS into control/data plane

 Direct application I/O on data path
» Specialized I/O libaries

* Application-level I/O stacks deliver great performance
e Redis: up to 9x throughput, 81% speedup
e Memcached scales linearly to 3x throughput

Source code: http://arrakis.cs.washington.edu

Today's Data Center Networks

Interconnect

Cost vs. Capacity

* Tension between high cost of network equipment
and performance impact of congestion
* Under-provisioned aggregation/core switches
* High bandwidth/less congestion within a rack

* Above ToR switches, average link utilization is only
25% at best

* Over a 5 min period, 2.3% of links experience loss

Statistics from Benson ‘09 & ’10

Why Is This Happening?

* Rack-level traffic is bursty/long-tailed

100 F I Y I 1 I I T |
10
1 F

0.1 F

PDF

0.01

0.001 |

0.0001 L

Link Capacity(Gb)

This is often a result of good job placement, not bad!

Subways

A family of data center architectures
that use multiple ports per server

XX

Subways

A family of data center architectures
that use multiple ports per server

We do this with modification

and with

e Less traffic in the ToR interconnect

* Remaining traffic is spread more evenly

Wiring

Single ToR per Shared ToRs Cross-cluster

rack w/in a cluster loops

téo Uniform Level-0 Level-1 Level-2
= random
@)
c
= Adaptive load
G ACGApLVE 104 Level-3 Level-4
m balancing eve cve
S
O
S

Detours Level-5 Level-6

Load Balancing

Uniform
random

Adaptive load
balancing

Detours

Single ToR per
rack

Level-0

Wiring

Level-1: Shared ToRs w/in a cluster

e Less traffic in the ToR interconnect

* Remaining traffic is spread more evenly
* No changes to routing

Level-2: Cross-cluster Loops

* Load balancing across both racks and clusters
* More shortcuts -> Decreased load on network core

Load Balancing

Uniform
random

Single ToR per
rack

Level-0

Wiring

Shared ToRs
w/in a cluster

Level-1

Cross-cluster
loops

Level-2

Uniform Random

50% 50% 50% 50%

Adaptive Load Balancing

100% 50% 50% 100%

* Using either MPTCP or Weighted-ECMP
* Better tail latency/less congestion

Detours

100% 50% 50% 100%

e Offload traffic to nearby ToRs

Detours

a7 a9 I o

e Offload traffic to nearby ToRs

* For a single rack, provides full burst bandwidth
regardless of oversubscription ratio

Physical Design
Considerations

G N ﬁrmﬂﬁﬁf i
S R /A.... .3,.“...... 2 % s

£ l..lwr - v.t viﬂr .v:,.c.
¢ ~Ve N ik - | & N B
SR SESS A
A R\ .h»LWa&
O R A N W

\ 1

C\-
Q.
O

O
9P
>
(©
=

{®.
>
N
©
O

i
=
D
=

1

<

D
&
=
®,

N

Within Row

Across Row

Bird’s-eye view

How Might We Wire a Subways

Evaluation

Improving Memcache Throughput

2.8X
1.5x
1.2x
| .

W level-0 ¥ Level-1 ™ Level-3 I Level-5

35M

= [N N w
) ul o ul o
< < < < <

Max Sustained Items/second

n
<

o
<

Completion Time (ms)

Faster MapReduce with Less
Hardware

1400

1200

[EEY
o
(@)
o

800
46%

o))
S
A
v

400

200
5 6 7 8 9 10 11 12 13 14

ToR Oversubscription Ratio

Level-0 Level-2 Level-4 Level-6

15

Subways Summary

* Data center network is becoming bottleneck
 Above ToR, network is both congested and under-
utilized
* Subways: Wire multiple NICs per server into adjacent
racks
e Cross-rack, cross-cluster, aisle-wide dynamic load
balancing
 Benefits to application performance/system cost
* Memcache: up to 2.8x better throughput

 MapReduce: equal performance with 1.9x less
bandwidth in data center aggregation network

Biography

* College: physics -> psychology -> philosophy

* Took three CS classes as a senior

* After college: developed an OS for a z80
* After project shipped, project got cancelled
* So | applied to grad school; seven out of eight turned me down

* Grad school
* Learned alot
e Dissertation had zero commercial impact for decades

* Post-grad
* Pick topics where | get to learn a lot
 Work with people from whom | can learn a lot

